Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 90

1.

Short-term training alters the control of mitochondrial respiration rate before maximal oxidative ATP synthesis.

Layec G, Haseler LJ, Hoff J, Hart CR, Liu X, Le Fur Y, Jeong EK, Richardson RS.

Acta Physiol (Oxf). 2013 Aug;208(4):376-86. doi: 10.1111/apha.12103. Epub 2013 May 2.

2.

Effects of exercise-induced intracellular acidosis on the phosphocreatine recovery kinetics: a 31P MRS study in three muscle groups in humans.

Layec G, Malucelli E, Le Fur Y, Manners D, Yashiro K, Testa C, Cozzone PJ, Iotti S, Bendahan D.

NMR Biomed. 2013 Nov;26(11):1403-11. doi: 10.1002/nbm.2966. Epub 2013 May 23.

PMID:
23703831
3.

Physical training improves skeletal muscle metabolism in patients with chronic heart failure.

Adamopoulos S, Coats AJ, Brunotte F, Arnolda L, Meyer T, Thompson CH, Dunn JF, Stratton J, Kemp GJ, Radda GK, et al.

J Am Coll Cardiol. 1993 Apr;21(5):1101-6.

4.

Non-invasive assessment of oxidative capacity in young Indian men and women: a 31P magnetic resonance spectroscopy study.

Rana P, Varshney A, Devi MM, Kumar P, Khushu S.

Indian J Biochem Biophys. 2008 Aug;45(4):263-8.

PMID:
18788477
5.

Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in humans.

Forbes SC, Slade JM, Meyer RA.

Appl Physiol Nutr Metab. 2008 Dec;33(6):1124-31. doi: 10.1139/H08-099.

PMID:
19088770
6.

High-intensity interval training alters ATP pathway flux during maximal muscle contractions in humans.

Larsen RG, Maynard L, Kent JA.

Acta Physiol (Oxf). 2014 May;211(1):147-60. doi: 10.1111/apha.12275. Epub 2014 Apr 2.

7.

Accuracy and precision of quantitative 31P-MRS measurements of human skeletal muscle mitochondrial function.

Layec G, Gifford JR, Trinity JD, Hart CR, Garten RS, Park SY, Le Fur Y, Jeong EK, Richardson RS.

Am J Physiol Endocrinol Metab. 2016 Aug 1;311(2):E358-66. doi: 10.1152/ajpendo.00028.2016. Epub 2016 Jun 14.

8.

High-intensity interval training increases in vivo oxidative capacity with no effect on P(i)→ATP rate in resting human muscle.

Larsen RG, Befroy DE, Kent-Braun JA.

Am J Physiol Regul Integr Comp Physiol. 2013 Mar 1;304(5):R333-42. doi: 10.1152/ajpregu.00409.2012. Epub 2012 Dec 19.

9.

A cross-validation of near-infrared spectroscopy measurements of skeletal muscle oxidative capacity with phosphorus magnetic resonance spectroscopy.

Ryan TE, Southern WM, Reynolds MA, McCully KK.

J Appl Physiol (1985). 2013 Dec;115(12):1757-66. doi: 10.1152/japplphysiol.00835.2013. Epub 2013 Oct 17.

10.

Phosphocreatine resynthesis during recovery in different muscles of the exercising leg by 31P-MRS.

Yoshida T, Abe D, Fukuoka Y.

Scand J Med Sci Sports. 2013 Oct;23(5):e313-9. doi: 10.1111/sms.12081. Epub 2013 May 13.

PMID:
23662804
11.

Comparison of in vivo postexercise phosphocreatine recovery and resting ATP synthesis flux for the assessment of skeletal muscle mitochondrial function.

van den Broek NM, Ciapaite J, Nicolay K, Prompers JJ.

Am J Physiol Cell Physiol. 2010 Nov;299(5):C1136-43. doi: 10.1152/ajpcell.00200.2010. Epub 2010 Jul 28.

12.

Mitochondrial function in human skeletal muscle is not impaired by high intensity exercise.

Tonkonogi M, Walsh B, Tiivel T, Saks V, Sahlin K.

Pflugers Arch. 1999 Mar;437(4):562-8.

PMID:
10089569
13.

Calf muscle mitochondrial and glycogenolytic ATP synthesis in patients with claudication due to peripheral vascular disease analysed using 31P magnetic resonance spectroscopy.

Kemp GJ, Hands LJ, Ramaswami G, Taylor DJ, Nicolaides A, Amato A, Radda GK.

Clin Sci (Lond). 1995 Dec;89(6):581-90.

PMID:
8549076
14.

Comparative determination of energy production rates and mitochondrial function using different 31P MRS quantitative methods in sedentary and trained subjects.

Layec G, Bringard A, Le Fur Y, Vilmen C, Micallef JP, Perrey S, Cozzone PJ, Bendahan D.

NMR Biomed. 2011 May;24(4):425-38. doi: 10.1002/nbm.1607. Epub 2010 Oct 19.

PMID:
20963767
15.

The effect of higher ATP cost of contraction on the metabolic response to graded exercise in patients with chronic obstructive pulmonary disease.

Layec G, Haseler LJ, Richardson RS.

J Appl Physiol (1985). 2012 Mar;112(6):1041-8. doi: 10.1152/japplphysiol.00986.2011. Epub 2011 Dec 15.

16.

Control of phosphocreatine resynthesis during recovery from exercise in human skeletal muscle.

Kemp GJ, Taylor DJ, Radda GK.

NMR Biomed. 1993 Jan-Feb;6(1):66-72.

PMID:
8457428
17.

Mitochondrial function and oxygen supply in normal and in chronically ischemic muscle: a combined 31P magnetic resonance spectroscopy and near infrared spectroscopy study in vivo.

Kemp GJ, Roberts N, Bimson WE, Bakran A, Harris PL, Gilling-Smith GL, Brennan J, Rankin A, Frostick SP.

J Vasc Surg. 2001 Dec;34(6):1103-10.

18.

Bio-energetic impairment in human calf muscle in thyroid disorders: a 31P MRS study.

Khushu S, Rana P, Sekhri T, Sripathy G, Tripathi RP.

Magn Reson Imaging. 2010 Jun;28(5):683-9. doi: 10.1016/j.mri.2010.01.006. Epub 2010 Mar 23.

PMID:
20332062
19.

Reduced muscle oxidative capacity is independent of O2 availability in elderly people.

Layec G, Haseler LJ, Richardson RS.

Age (Dordr). 2013 Aug;35(4):1183-92. doi: 10.1007/s11357-012-9442-6. Epub 2012 Jul 4.

20.

Supplemental Content

Support Center