Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Optimisation of embryonic and larval ECG measurement in zebrafish for quantifying the effect of QT prolonging drugs.

Dhillon SS, Dóró E, Magyary I, Egginton S, Sík A, Müller F.

PLoS One. 2013 Apr 8;8(4):e60552. doi: 10.1371/journal.pone.0060552. Print 2013.

2.

Optimization of the adult zebrafish ECG method for assessment of drug-induced QTc prolongation.

Chaudhari GH, Chennubhotla KS, Chatti K, Kulkarni P.

J Pharmacol Toxicol Methods. 2013 Mar-Apr;67(2):115-20. doi: 10.1016/j.vascn.2013.01.007. Epub 2013 Jan 24.

PMID:
23353637
3.

In vivo recording of adult zebrafish electrocardiogram and assessment of drug-induced QT prolongation.

Milan DJ, Jones IL, Ellinor PT, MacRae CA.

Am J Physiol Heart Circ Physiol. 2006 Jul;291(1):H269-73. Epub 2006 Feb 17.

4.

Flexible and waterproof micro-sensors to uncover zebrafish circadian rhythms: The next generation of cardiac monitoring for drug screening.

Zhang X, Beebe T, Jen N, Lee CA, Tai Y, Hsiai TK.

Biosens Bioelectron. 2015 Sep 15;71:150-7. doi: 10.1016/j.bios.2015.04.027. Epub 2015 Apr 14.

5.

QT prolongation in guinea pigs for preliminary screening of torsadogenicity of drugs and drug-candidates. II.

Testai L, Breschi MC, Martinotti E, Calderone V.

J Appl Toxicol. 2007 May-Jun;27(3):270-5.

PMID:
17265420
6.

Zebrafish embryos express an orthologue of HERG and are sensitive toward a range of QT-prolonging drugs inducing severe arrhythmia.

Langheinrich U, Vacun G, Wagner T.

Toxicol Appl Pharmacol. 2003 Dec 15;193(3):370-82.

PMID:
14678746
7.

Evolving cardiac conduction phenotypes in developing zebrafish larvae: implications to drug sensitivity.

Yu F, Huang J, Adlerz K, Jadvar H, Hamdan MH, Chi N, Chen JN, Hsiai TK.

Zebrafish. 2010 Dec;7(4):325-31. doi: 10.1089/zeb.2010.0658. Epub 2010 Oct 20.

8.

In-vitro recording of adult zebrafish heart electrocardiogram - a platform for pharmacological testing.

Tsai CT, Wu CK, Chiang FT, Tseng CD, Lee JK, Yu CC, Wang YC, Lai LP, Lin JL, Hwang JJ.

Clin Chim Acta. 2011 Oct 9;412(21-22):1963-7. doi: 10.1016/j.cca.2011.07.002. Epub 2011 Jul 8.

PMID:
21767531
9.

Sample size, power calculations, and their implications for the cost of thorough studies of drug induced QT interval prolongation.

Malik M, Hnatkova K, Batchvarov V, Gang Y, Smetana P, Camm AJ.

Pacing Clin Electrophysiol. 2004 Dec;27(12):1659-69.

PMID:
15613131
10.

The anesthetized guinea pig: an effective early cardiovascular derisking and lead optimization model.

Morissette P, Nishida M, Trepakova E, Imredy J, Lagrutta A, Chaves A, Hoagland K, Hoe CM, Zrada MM, Travis JJ, Zingaro GJ, Gerenser P, Friedrichs G, Salata JJ.

J Pharmacol Toxicol Methods. 2013 Jul-Aug;68(1):137-49. doi: 10.1016/j.vascn.2013.04.010. Epub 2013 May 4.

PMID:
23649000
11.

Evaluation of spontaneous propulsive movement as a screening tool to detect rescue of Parkinsonism phenotypes in zebrafish models.

Farrell TC, Cario CL, Milanese C, Vogt A, Jeong JH, Burton EA.

Neurobiol Dis. 2011 Oct;44(1):9-18. doi: 10.1016/j.nbd.2011.05.016. Epub 2011 Jun 6.

12.

QT prolongation in anaesthetized guinea-pigs: an experimental approach for preliminary screening of torsadogenicity of drugs and drug candidates.

Testai L, Calderone V, Salvadori A, Breschi MC, Nieri P, Martinotti E.

J Appl Toxicol. 2004 May-Jun;24(3):217-22.

PMID:
15211616
13.

A multi-endpoint in vivo larval zebrafish (Danio rerio) model for the assessment of integrated cardiovascular function.

Parker T, Libourel PA, Hetheridge MJ, Cumming RI, Sutcliffe TP, Goonesinghe AC, Ball JS, Owen SF, Chomis Y, Winter MJ.

J Pharmacol Toxicol Methods. 2014 Jan-Feb;69(1):30-8. doi: 10.1016/j.vascn.2013.10.002. Epub 2013 Oct 16.

PMID:
24140389
14.

Assessment of drug-induced QT interval prolongation in conscious rabbits.

Kijtawornrat A, Ozkanlar Y, Keene BW, Roche BM, Hamlin DM, Hamlin RL.

J Pharmacol Toxicol Methods. 2006 Mar-Apr;53(2):168-73. Epub 2005 Nov 14.

PMID:
16290300
15.

3D Finite Element Electrical Model of Larval Zebrafish ECG Signals.

Crowcombe J, Dhillon SS, Hurst RM, Egginton S, Müller F, Sík A, Tarte E.

PLoS One. 2016 Nov 8;11(11):e0165655. doi: 10.1371/journal.pone.0165655. eCollection 2016.

16.

Drug induced shortening of the QT/QTc interval: an emerging safety issue warranting further modelling and evaluation in drug research and development?

Holbrook M, Malik M, Shah RR, Valentin JP.

J Pharmacol Toxicol Methods. 2009 Jan-Feb;59(1):21-8. doi: 10.1016/j.vascn.2008.09.001. Epub 2008 Sep 17.

PMID:
18834945
17.

Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development.

Redfern WS, Carlsson L, Davis AS, Lynch WG, MacKenzie I, Palethorpe S, Siegl PK, Strang I, Sullivan AT, Wallis R, Camm AJ, Hammond TG.

Cardiovasc Res. 2003 Apr 1;58(1):32-45. Review.

PMID:
12667944
18.

Evaluation of the guinea pig monophasic action potential (MAP) assay in predicting drug-induced delay of ventricular repolarisation using 12 clinically documented drugs.

Kågström J, Sjögren EL, Ericson AC.

J Pharmacol Toxicol Methods. 2007 Sep-Oct;56(2):186-93. Epub 2007 May 24.

PMID:
17582787
19.
20.

In vivo measurement of QT prolongation, dispersion and arrhythmogenesis: application to the preclinical cardiovascular safety pharmacology of a new chemical entity.

De Clerck F, Van de Water A, D'Aubioul J, Lu HR, van Rossem K, Hermans A, Van Ammel K.

Fundam Clin Pharmacol. 2002 Apr;16(2):125-40. Review.

PMID:
12031065

Supplemental Content

Support Center