Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 123

1.

Directing neural differentiation of mesenchymal stem cells by carboxylated multiwalled carbon nanotubes.

Chen YS, Hsiue GH.

Biomaterials. 2013 Jul;34(21):4936-44. doi: 10.1016/j.biomaterials.2013.03.063. Epub 2013 Apr 9.

PMID:
23578561
2.

Inhibition of proliferation and differentiation of mesenchymal stem cells by carboxylated carbon nanotubes.

Liu D, Yi C, Zhang D, Zhang J, Yang M.

ACS Nano. 2010 Apr 27;4(4):2185-95. doi: 10.1021/nn901479w.

PMID:
20218664
3.

Carbon nanotube-collagen three-dimensional culture of mesenchymal stem cells promotes expression of neural phenotypes and secretion of neurotrophic factors.

Lee JH, Lee JY, Yang SH, Lee EJ, Kim HW.

Acta Biomater. 2014 Oct;10(10):4425-36. doi: 10.1016/j.actbio.2014.06.023. Epub 2014 Jun 19.

PMID:
24954912
4.

Regulation of morphogenesis and neural differentiation of human mesenchymal stem cells using carbon nanotube sheets.

Kim JA, Jang EY, Kang TJ, Yoon S, Ovalle-Robles R, Rhee WJ, Kim T, Baughman RH, Kim YH, Park TH.

Integr Biol (Camb). 2012 Jun;4(6):587-94. doi: 10.1039/c2ib20017a. Epub 2012 Apr 25.

PMID:
22532065
5.

Functionalized carbon nanotubes as suitable scaffold materials for proliferation and differentiation of canine mesenchymal stem cells.

Das K, Madhusoodan AP, Mili B, Kumar A, Saxena AC, Kumar K, Sarkar M, Singh P, Srivastava S, Bag S.

Int J Nanomedicine. 2017 Apr 19;12:3235-3252. doi: 10.2147/IJN.S122945. eCollection 2017.

6.

Adsorption of mesenchymal stem cells and cortical neural stem cells on carbon nanotube/polycarbonate urethane.

Nho Y, Kim JY, Khang D, Webster TJ, Lee JE.

Nanomedicine (Lond). 2010 Apr;5(3):409-17. doi: 10.2217/nnm.10.16.

PMID:
20394534
7.

Transplantation of neuronal-primed human bone marrow mesenchymal stem cells in hemiparkinsonian rodents.

Khoo ML, Tao H, Meedeniya AC, Mackay-Sim A, Ma DD.

PLoS One. 2011;6(5):e19025. doi: 10.1371/journal.pone.0019025. Epub 2011 May 23.

8.

Magnetic carbon nanotubes: a new tool for shepherding mesenchymal stem cells by magnetic fields.

Vittorio O, Quaranta P, Raffa V, Funel N, Campani D, Pelliccioni S, Longoni B, Mosca F, Pietrabissa A, Cuschieri A.

Nanomedicine (Lond). 2011 Jan;6(1):43-54. doi: 10.2217/nnm.10.125. Erratum in: Nanomedicine (Lond). 2011 Feb;6(2):406.

PMID:
21182417
9.

Defect density in multiwalled carbon nanotubes influences ovalbumin adsorption and promotes macrophage activation and CD4(+) T-cell proliferation.

Bai W, Raghavendra A, Podila R, Brown JM.

Int J Nanomedicine. 2016 Sep 2;11:4357-71. doi: 10.2147/IJN.S111029. eCollection 2016.

10.

Improved neural differentiation of human mesenchymal stem cells interfaced with carbon nanotube scaffolds.

Park SY, Kang BS, Hong S.

Nanomedicine (Lond). 2013 May;8(5):715-23. doi: 10.2217/nnm.12.143. Epub 2012 Oct 17.

PMID:
23075338
11.

Short multiwall carbon nanotubes promote neuronal differentiation of PC12 cells via up-regulation of the neurotrophin signaling pathway.

Meng L, Chen R, Jiang A, Wang L, Wang P, Li CZ, Bai R, Zhao Y, Autrup H, Chen C.

Small. 2013 May 27;9(9-10):1786-98. doi: 10.1002/smll.201201388. Epub 2012 Nov 7.

PMID:
23135796
12.

Myocardin-related transcription factor-A is a key regulator in retinoic acid-induced neural-like differentiation of adult bone marrow-derived mesenchymal stem cells.

Wang N, Xu Y, Qin T, Wang FP, Ma LL, Luo XG, Zhang TC.

Gene. 2013 Jul 10;523(2):178-86. doi: 10.1016/j.gene.2013.03.043. Epub 2013 Mar 27.

PMID:
23541806
13.

Influence of purity and surface oxidation on cytotoxicity of multiwalled carbon nanotubes with human neuroblastoma cells.

Vittorio O, Raffa V, Cuschieri A.

Nanomedicine. 2009 Dec;5(4):424-31. doi: 10.1016/j.nano.2009.02.006. Epub 2009 Mar 31.

PMID:
19341817
14.

Neural differentiation ability of mesenchymal stromal cells from bone marrow and adipose tissue: a comparative study.

Zhang HT, Liu ZL, Yao XQ, Yang ZJ, Xu RX.

Cytotherapy. 2012 Nov;14(10):1203-14. doi: 10.3109/14653249.2012.711470. Epub 2012 Aug 22.

PMID:
22909277
16.

Comparative analysis of neuroectodermal differentiation capacity of human bone marrow stromal cells using various conversion protocols.

Hermann A, Liebau S, Gastl R, Fickert S, Habisch HJ, Fiedler J, Schwarz J, Brenner R, Storch A.

J Neurosci Res. 2006 Jun;83(8):1502-14.

PMID:
16612831
17.

Nestin-positive mesenchymal stem cells favour the astroglial lineage in neural progenitors and stem cells by releasing active BMP4.

Wislet-Gendebien S, Bruyère F, Hans G, Leprince P, Moonen G, Rogister B.

BMC Neurosci. 2004 Sep 15;5:33.

18.

Thin films of functionalized multiwalled carbon nanotubes as suitable scaffold materials for stem cells proliferation and bone formation.

Nayak TR, Jian L, Phua LC, Ho HK, Ren Y, Pastorin G.

ACS Nano. 2010 Dec 28;4(12):7717-25. doi: 10.1021/nn102738c. Epub 2010 Nov 30.

PMID:
21117641
19.

Safrole oxide induced neuronal differentiation of rat bone-marrow mesenchymal stem cells by elevating Hsp70.

Zhao Y, Xin J, Sun C, Zhao B, Zhao J, Su L.

Gene. 2012 Nov 1;509(1):85-92. doi: 10.1016/j.gene.2012.07.088. Epub 2012 Aug 22.

PMID:
22921323
20.

Paracrine interactions between mesenchymal stem cells affect substrate driven differentiation toward tendon and bone phenotypes.

Sharma RI, Snedeker JG.

PLoS One. 2012;7(2):e31504. doi: 10.1371/journal.pone.0031504. Epub 2012 Feb 15.

Supplemental Content

Support Center