Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 172

1.

Combined modality doxorubicin-based chemotherapy and chitosan-mediated p53 gene therapy using double-walled microspheres for treatment of human hepatocellular carcinoma.

Xu Q, Leong J, Chua QY, Chi YT, Chow PK, Pack DW, Wang CH.

Biomaterials. 2013 Jul;34(21):5149-62. doi: 10.1016/j.biomaterials.2013.03.044. Epub 2013 Apr 8.

2.

Monodisperse double-walled microspheres loaded with chitosan-p53 nanoparticles and doxorubicin for combined gene therapy and chemotherapy.

Xu Q, Xia Y, Wang CH, Pack DW.

J Control Release. 2012 Oct 28;163(2):130-5. doi: 10.1016/j.jconrel.2012.08.032. Epub 2012 Sep 7.

3.

Application of doxorubicin-induced rAAV2-p53 gene delivery in combined chemotherapy and gene therapy for hepatocellular carcinoma.

Chen CA, Lo CK, Lin BL, Sibley E, Tang SC.

Cancer Biol Ther. 2008 Feb;7(2):303-9. Epub 2007 Nov 21.

4.

Biocompatible cationic pullulan-g-desoxycholic acid-g-PEI micelles used to co-deliver drug and gene for cancer therapy.

Chen L, Ji F, Bao Y, Xia J, Guo L, Wang J, Li Y.

Mater Sci Eng C Mater Biol Appl. 2017 Jan 1;70(Pt 1):418-429. doi: 10.1016/j.msec.2016.09.019. Epub 2016 Sep 7.

PMID:
27770912
5.

Self-assembled oligopeptide nanostructures for co-delivery of drug and gene with synergistic therapeutic effect.

Wiradharma N, Tong YW, Yang YY.

Biomaterials. 2009 Jun;30(17):3100-9. doi: 10.1016/j.biomaterials.2009.03.006. Epub 2009 Apr 1.

PMID:
19342093
6.

Improved antitumor activity and reduced cardiotoxicity of epirubicin using hepatocyte-targeted nanoparticles combined with tocotrienols against hepatocellular carcinoma in mice.

Nasr M, Nafee N, Saad H, Kazem A.

Eur J Pharm Biopharm. 2014 Sep;88(1):216-25. doi: 10.1016/j.ejpb.2014.04.016. Epub 2014 May 6.

PMID:
24813390
7.

WP1130 increases doxorubicin sensitivity in hepatocellular carcinoma cells through usp9x-dependent p53 degradation.

Liu H, Chen W, Liang C, Chen BW, Zhi X, Zhang S, Zheng X, Bai X, Liang T.

Cancer Lett. 2015 Jun 1;361(2):218-25. doi: 10.1016/j.canlet.2015.03.001. Epub 2015 Mar 5.

PMID:
25749422
8.

Ligand-directed reduction-sensitive shell-sheddable biodegradable micelles actively deliver doxorubicin into the nuclei of target cancer cells.

Zhong Y, Yang W, Sun H, Cheng R, Meng F, Deng C, Zhong Z.

Biomacromolecules. 2013 Oct 14;14(10):3723-30. doi: 10.1021/bm401098w. Epub 2013 Sep 16.

PMID:
23998942
9.

Development and application of micro-polysaccharide drug carriers incorporating doxorubicin and superparamagnetic iron oxide for bimodality treatment of hepatocellular carcinoma.

Tang SL, Bai MY, Wang JY, Hong PD.

Colloids Surf B Biointerfaces. 2017 Mar 1;151:304-313. doi: 10.1016/j.colsurfb.2016.12.036. Epub 2016 Dec 23.

PMID:
28040662
10.
11.

Activation of tumor suppressor p53 gene expression by magnetic thymine-imprinted chitosan nanoparticles.

Lee MH, Thomas JL, Chen JZ, Jan JS, Lin HY.

Chem Commun (Camb). 2016 Feb 4;52(10):2137-40. doi: 10.1039/c5cc09896c.

PMID:
26693943
12.

Multifunctional PEG modified DOX loaded mesoporous silica nanoparticle@CuS nanohybrids as photo-thermal agent and thermal-triggered drug release vehicle for hepatocellular carcinoma treatment.

Wu L, Wu M, Zeng Y, Zhang D, Zheng A, Liu X, Liu J.

Nanotechnology. 2015 Jan 16;26(2):025102. doi: 10.1088/0957-4484/26/2/025102. Epub 2014 Dec 17.

PMID:
25517859
13.

Gas-generating TPGS-PLGA microspheres loaded with nanoparticles (NIMPS) for co-delivery of minicircle DNA and anti-tumoral drugs.

Gaspar VM, Moreira AF, Costa EC, Queiroz JA, Sousa F, Pichon C, Correia IJ.

Colloids Surf B Biointerfaces. 2015 Oct 1;134:287-94. doi: 10.1016/j.colsurfb.2015.07.004. Epub 2015 Jul 9.

PMID:
26209779
14.

Glyco-nanoparticles with sheddable saccharide shells: a unique and potent platform for hepatoma-targeting delivery of anticancer drugs.

Chen W, Zou Y, Meng F, Cheng R, Deng C, Feijen J, Zhong Z.

Biomacromolecules. 2014 Mar 10;15(3):900-7. doi: 10.1021/bm401749t. Epub 2014 Feb 3.

PMID:
24460130
15.

Targeted doxorubicin delivery by chitosan-galactosylated modified polymer microbubbles to hepatocarcinoma cells.

Villa R, Cerroni B, Viganò L, Margheritelli S, Abolafio G, Oddo L, Paradossi G, Zaffaroni N.

Colloids Surf B Biointerfaces. 2013 Oct 1;110:434-42. doi: 10.1016/j.colsurfb.2013.04.022. Epub 2013 May 13.

PMID:
23759384
16.

Mitomycin C and doxorubicin elicit conflicting signals by causing accumulation of cyclin E prior to p21WAF1/CIP1 elevation in human hepatocellular carcinoma cells.

Choi SY, Shen YN, Woo SR, Yun M, Park JE, Ju YJ, Jeong J, Shin HJ, Joo HY, Park ER, Lee JK, Kim SH, Cho MH, Kong IS, Lee KH.

Int J Oncol. 2012 Jan;40(1):277-86. doi: 10.3892/ijo.2011.1184. Epub 2011 Sep 1.

PMID:
21887464
17.

Hepatocellular carcinoma and chemotherapy: the role of p53.

Brito AF, Abrantes AM, Pinto-Costa C, Gomes AR, Mamede AC, Casalta-Lopes J, Gonçalves AC, Sarmento-Ribeiro AB, Tralhão JG, Botelho MF.

Chemotherapy. 2012;58(5):381-6. doi: 10.1159/000343656. Epub 2012 Dec 21.

PMID:
23257706
18.

Stepwise pH-responsive nanoparticles containing charge-reversible pullulan-based shells and poly(β-amino ester)/poly(lactic-co-glycolic acid) cores as carriers of anticancer drugs for combination therapy on hepatocellular carcinoma.

Zhang C, An T, Wang D, Wan G, Zhang M, Wang H, Zhang S, Li R, Yang X, Wang Y.

J Control Release. 2016 Mar 28;226:193-204. doi: 10.1016/j.jconrel.2016.02.030. Epub 2016 Feb 16.

PMID:
26896737
19.

Ursodeoxycholic acid switches oxaliplatin-induced necrosis to apoptosis by inhibiting reactive oxygen species production and activating p53-caspase 8 pathway in HepG2 hepatocellular carcinoma.

Lim SC, Choi JE, Kang HS, Han SI.

Int J Cancer. 2010 Apr 1;126(7):1582-95. doi: 10.1002/ijc.24853. Erratum in: Int J Cancer. 2010 Jul 15;127(2). doi: 10.1002/ijc.25347. Si, Han [corrected to Han, Song Iy].

20.

Heterogeneous dimer peptide-conjugated polylysine dendrimer-Fe3O4 composite as a novel nanoscale molecular probe for early diagnosis and therapy in hepatocellular carcinoma.

Shen JM, Li XX, Fan LL, Zhou X, Han JM, Jia MK, Wu LF, Zhang XX, Chen J.

Int J Nanomedicine. 2017 Feb 10;12:1183-1200. doi: 10.2147/IJN.S126887. eCollection 2017.

Supplemental Content

Support Center