Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 121

1.

Flagella stator homologs function as motors for myxobacterial gliding motility by moving in helical trajectories.

Nan B, Bandaria JN, Moghtaderi A, Sun IH, Yildiz A, Zusman DR.

Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):E1508-13. doi: 10.1073/pnas.1219982110. Epub 2013 Apr 1.

2.

The polarity of myxobacterial gliding is regulated by direct interactions between the gliding motors and the Ras homolog MglA.

Nan B, Bandaria JN, Guo KY, Fan X, Moghtaderi A, Yildiz A, Zusman DR.

Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):E186-93. doi: 10.1073/pnas.1421073112. Epub 2014 Dec 30.

3.

The mysterious nature of bacterial surface (gliding) motility: A focal adhesion-based mechanism in Myxococcus xanthus.

Islam ST, Mignot T.

Semin Cell Dev Biol. 2015 Oct;46:143-54. doi: 10.1016/j.semcdb.2015.10.033. Epub 2015 Oct 28. Review.

PMID:
26520023
4.

Gliding motility in bacteria: insights from studies of Myxococcus xanthus.

Spormann AM.

Microbiol Mol Biol Rev. 1999 Sep;63(3):621-41. Review.

5.

Uncovering the mystery of gliding motility in the myxobacteria.

Nan B, Zusman DR.

Annu Rev Genet. 2011;45:21-39. doi: 10.1146/annurev-genet-110410-132547. Epub 2011 Sep 9. Review.

6.

Gliding motility revisited: how do the myxobacteria move without flagella?

Mauriello EM, Mignot T, Yang Z, Zusman DR.

Microbiol Mol Biol Rev. 2010 Jun;74(2):229-49. doi: 10.1128/MMBR.00043-09. Review.

7.

Myxococcus xanthus gliding motors are elastically coupled to the substrate as predicted by the focal adhesion model of gliding motility.

Balagam R, Litwin DB, Czerwinski F, Sun M, Kaplan HB, Shaevitz JW, Igoshin OA.

PLoS Comput Biol. 2014 May 8;10(5):e1003619. doi: 10.1371/journal.pcbi.1003619. eCollection 2014 May.

8.

Bacteria that glide with helical tracks.

Nan B, McBride MJ, Chen J, Zusman DR, Oster G.

Curr Biol. 2014 Feb 17;24(4):R169-73. doi: 10.1016/j.cub.2013.12.034. Review.

9.

The elusive engine in Myxococcus xanthus gliding motility.

Mignot T.

Cell Mol Life Sci. 2007 Nov;64(21):2733-45. Review.

PMID:
17653507
10.

Polarity of motility systems in Myxococcus xanthus.

Mauriello EM, Zusman DR.

Curr Opin Microbiol. 2007 Dec;10(6):624-9. Epub 2007 Nov 5. Review.

11.

A multi-protein complex from Myxococcus xanthus required for bacterial gliding motility.

Nan B, Mauriello EM, Sun IH, Wong A, Zusman DR.

Mol Microbiol. 2010 Jun;76(6):1539-54. doi: 10.1111/j.1365-2958.2010.07184.x. Epub 2010 May 12.

12.

The motors powering A-motility in Myxococcus xanthus are distributed along the cell body.

Sliusarenko O, Zusman DR, Oster G.

J Bacteriol. 2007 Nov;189(21):7920-1. Epub 2007 Aug 17.

13.

Evidence that focal adhesion complexes power bacterial gliding motility.

Mignot T, Shaevitz JW, Hartzell PL, Zusman DR.

Science. 2007 Feb 9;315(5813):853-6.

14.

Characterization of myxobacterial A-motility: insights from microcinematographic observations.

Koch MK, Hoiczyk E.

J Basic Microbiol. 2013 Sep;53(9):785-91. doi: 10.1002/jobm.201200307. Epub 2013 Jan 15.

15.
16.

Contact- and Protein Transfer-Dependent Stimulation of Assembly of the Gliding Motility Machinery in Myxococcus xanthus.

Jakobczak B, Keilberg D, Wuichet K, S√łgaard-Andersen L.

PLoS Genet. 2015 Jul 1;11(7):e1005341. doi: 10.1371/journal.pgen.1005341. eCollection 2015 Jul.

17.
18.

Ion-coupling determinants of Na+-driven and H+-driven flagellar motors.

Asai Y, Yakushi T, Kawagishi I, Homma M.

J Mol Biol. 2003 Mar 21;327(2):453-63.

PMID:
12628250
19.

Myxobacteria gliding motility requires cytoskeleton rotation powered by proton motive force.

Nan B, Chen J, Neu JC, Berry RM, Oster G, Zusman DR.

Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2498-503. doi: 10.1073/pnas.1018556108. Epub 2011 Jan 19.

20.

New clusters of genes required for gliding motility in Myxococcus xanthus.

MacNeil SD, Calara F, Hartzell PL.

Mol Microbiol. 1994 Oct;14(1):61-71.

PMID:
7830561

Supplemental Content

Support Center