Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 207

1.

A dataset on 145 chemicals tested in alternative assays for skin sensitization undergoing prevalidation.

Natsch A, Ryan CA, Foertsch L, Emter R, Jaworska J, Gerberick F, Kern P.

J Appl Toxicol. 2013 Nov;33(11):1337-52. doi: 10.1002/jat.2868. Epub 2013 Apr 9.

PMID:
23576290
2.

Data integration of non-animal tests for the development of a test battery to predict the skin sensitizing potential and potency of chemicals.

Nukada Y, Miyazawa M, Kazutoshi S, Sakaguchi H, Nishiyama N.

Toxicol In Vitro. 2013 Mar;27(2):609-18. doi: 10.1016/j.tiv.2012.11.006. Epub 2012 Nov 10.

PMID:
23149339
3.

Non-animal assessment of skin sensitization hazard: Is an integrated testing strategy needed, and if so what should be integrated?

Roberts DW, Patlewicz G.

J Appl Toxicol. 2018 Jan;38(1):41-50. doi: 10.1002/jat.3479. Epub 2017 May 24. Review.

PMID:
28543848
4.

Multivariate models for prediction of human skin sensitization hazard.

Strickland J, Zang Q, Paris M, Lehmann DM, Allen D, Choksi N, Matheson J, Jacobs A, Casey W, Kleinstreuer N.

J Appl Toxicol. 2017 Mar;37(3):347-360. doi: 10.1002/jat.3366. Epub 2016 Aug 2.

5.

Bayesian integrated testing strategy to assess skin sensitization potency: from theory to practice.

Jaworska J, Dancik Y, Kern P, Gerberick F, Natsch A.

J Appl Toxicol. 2013 Nov;33(11):1353-64. doi: 10.1002/jat.2869. Epub 2013 May 14.

PMID:
23670904
6.

Test battery with the human cell line activation test, direct peptide reactivity assay and DEREK based on a 139 chemical data set for predicting skin sensitizing potential and potency of chemicals.

Takenouchi O, Fukui S, Okamoto K, Kurotani S, Imai N, Fujishiro M, Kyotani D, Kato Y, Kasahara T, Fujita M, Toyoda A, Sekiya D, Watanabe S, Seto H, Hirota M, Ashikaga T, Miyazawa M.

J Appl Toxicol. 2015 Nov;35(11):1318-32. doi: 10.1002/jat.3127. Epub 2015 Mar 29.

PMID:
25820183
7.

Evaluation of combinations of in vitro sensitization test descriptors for the artificial neural network-based risk assessment model of skin sensitization.

Hirota M, Fukui S, Okamoto K, Kurotani S, Imai N, Fujishiro M, Kyotani D, Kato Y, Kasahara T, Fujita M, Toyoda A, Sekiya D, Watanabe S, Seto H, Takenouchi O, Ashikaga T, Miyazawa M.

J Appl Toxicol. 2015 Nov;35(11):1333-47. doi: 10.1002/jat.3105. Epub 2015 Mar 30.

PMID:
25824844
8.

Can currently available non-animal methods detect pre and pro-haptens relevant for skin sensitization?

Patlewicz G, Casati S, Basketter DA, Asturiol D, Roberts DW, Lepoittevin JP, Worth AP, Aschberger K.

Regul Toxicol Pharmacol. 2016 Dec;82:147-155. doi: 10.1016/j.yrtph.2016.08.007. Epub 2016 Aug 26.

PMID:
27569201
10.

Intralaboratory validation of four in vitro assays for the prediction of the skin sensitizing potential of chemicals.

Bauch C, Kolle SN, Fabian E, Pachel C, Ramirez T, Wiench B, Wruck CJ, van Ravenzwaay B, Landsiedel R.

Toxicol In Vitro. 2011 Sep;25(6):1162-8. doi: 10.1016/j.tiv.2011.05.030. Epub 2011 Jun 7.

PMID:
21669280
11.

Assessing skin sensitization hazard in mice and men using non-animal test methods.

Urbisch D, Mehling A, Guth K, Ramirez T, Honarvar N, Kolle S, Landsiedel R, Jaworska J, Kern PS, Gerberick F, Natsch A, Emter R, Ashikaga T, Miyazawa M, Sakaguchi H.

Regul Toxicol Pharmacol. 2015 Mar;71(2):337-51. doi: 10.1016/j.yrtph.2014.12.008. Epub 2014 Dec 23.

12.

Bayesian integrated testing strategy (ITS) for skin sensitization potency assessment: a decision support system for quantitative weight of evidence and adaptive testing strategy.

Jaworska JS, Natsch A, Ryan C, Strickland J, Ashikaga T, Miyazawa M.

Arch Toxicol. 2015 Dec;89(12):2355-83. doi: 10.1007/s00204-015-1634-2. Epub 2015 Nov 26.

PMID:
26612363
13.

The relationship between CD86/CD54 expression and THP-1 cell viability in an in vitro skin sensitization test--human cell line activation test (h-CLAT).

Sakaguchi H, Ashikaga T, Miyazawa M, Kosaka N, Ito Y, Yoneyama K, Sono S, Itagaki H, Toyoda H, Suzuki H.

Cell Biol Toxicol. 2009 Apr;25(2):109-26. doi: 10.1007/s10565-008-9059-9. Epub 2008 Jan 19.

PMID:
18204907
14.

Prediction of skin sensitization potency using machine learning approaches.

Zang Q, Paris M, Lehmann DM, Bell S, Kleinstreuer N, Allen D, Matheson J, Jacobs A, Casey W, Strickland J.

J Appl Toxicol. 2017 Jul;37(7):792-805. doi: 10.1002/jat.3424. Epub 2017 Jan 10.

15.

An in vitro method for detecting chemical sensitization using human reconstructed skin models and its applicability to cosmetic, pharmaceutical, and medical device safety testing.

McKim JM Jr, Keller DJ 3rd, Gorski JR.

Cutan Ocul Toxicol. 2012 Dec;31(4):292-305. doi: 10.3109/15569527.2012.667031. Epub 2012 Apr 12.

PMID:
22494060
16.

Non-animal methods to predict skin sensitization (I): the Cosmetics Europe database<sup/>.

Hoffmann S, Kleinstreuer N, Alépée N, Allen D, Api AM, Ashikaga T, Clouet E, Cluzel M, Desprez B, Gellatly N, Goebel C, Kern PS, Klaric M, Kühnl J, Lalko JF, Martinozzi-Teissier S, Mewes K, Miyazawa M, Parakhia R, van Vliet E, Zang Q, Petersohn D.

Crit Rev Toxicol. 2018 May;48(5):344-358. doi: 10.1080/10408444.2018.1429385. Epub 2018 Feb 23. Review.

PMID:
29474128
17.

Evaluation of in vitro assays for the assessment of the skin sensitization hazard of functional polysiloxanes and silanes.

Petry T, Bosch A, Coste X, Eigler D, Germain P, Seidel S, Jean PA.

Regul Toxicol Pharmacol. 2017 Mar;84:64-76. doi: 10.1016/j.yrtph.2016.12.009. Epub 2016 Dec 23.

PMID:
28017767
18.
19.

A fast Resazurin-based live viability assay is equivalent to the MTT-test in the KeratinoSens assay.

Emter R, Natsch A.

Toxicol In Vitro. 2015 Jun;29(4):688-93. doi: 10.1016/j.tiv.2015.02.003. Epub 2015 Feb 14.

PMID:
25687527
20.

A genomic biomarker signature can predict skin sensitizers using a cell-based in vitro alternative to animal tests.

Johansson H, Lindstedt M, Albrekt AS, Borrebaeck CA.

BMC Genomics. 2011 Aug 8;12:399. doi: 10.1186/1471-2164-12-399.

Supplemental Content

Support Center