Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 77

1.

Further evaluation of the neuropharmacological determinants of the antidepressant-like effects of curcumin.

Witkin JM, Leucke S, Thompson LK, Lynch RA, Ding C, Heinz B, Catlow JT, Gleason SD, Li X.

CNS Neurol Disord Drug Targets. 2013 Jun;12(4):498-505.

PMID:
23574162
2.

Antidepressant activity of curcumin: involvement of serotonin and dopamine system.

Kulkarni SK, Bhutani MK, Bishnoi M.

Psychopharmacology (Berl). 2008 Dec;201(3):435-42. doi: 10.1007/s00213-008-1300-y. Epub 2008 Sep 3.

PMID:
18766332
3.

NMDA GluN2B receptors involved in the antidepressant effects of curcumin in the forced swim test.

Zhang L, Xu T, Wang S, Yu L, Liu D, Zhan R, Yu SY.

Prog Neuropsychopharmacol Biol Psychiatry. 2013 Jan 10;40:12-7. doi: 10.1016/j.pnpbp.2012.08.017. Epub 2012 Aug 31.

PMID:
22960607
4.

The antidepressant effects of curcumin in the forced swimming test involve 5-HT1 and 5-HT2 receptors.

Wang R, Xu Y, Wu HL, Li YB, Li YH, Guo JB, Li XJ.

Eur J Pharmacol. 2008 Jan 6;578(1):43-50. Epub 2007 Sep 19.

PMID:
17942093
5.

Evaluation of antidepressant-like activity of novel water-soluble curcumin formulations and St. John's wort in behavioral paradigms of despair.

Kulkarni SK, Akula KK, Deshpande J.

Pharmacology. 2012;89(1-2):83-90. doi: 10.1159/000335660. Epub 2012 Feb 14.

PMID:
22343362
6.

Evaluation of antidepressant activity of 1-(7-methoxy-2-methyl-1,2,3,4-tetrahydro-isoquinolin-4-YL)-cyclohexanol, a β-substituted phenylethylamine in mice.

Dhir A, Malik S, Kessar SV, Singh KN, Kulkarni SK.

Eur Neuropsychopharmacol. 2011 Sep;21(9):705-14. doi: 10.1016/j.euroneuro.2010.12.003. Epub 2011 Jan 31.

PMID:
21277753
7.

Potentials of curcumin as an antidepressant.

Kulkarni S, Dhir A, Akula KK.

ScientificWorldJournal. 2009 Nov 1;9:1233-41. doi: 10.1100/tsw.2009.137. Review.

9.

On the mechanism of antidepressant-like action of berberine chloride.

Kulkarni SK, Dhir A.

Eur J Pharmacol. 2008 Jul 28;589(1-3):163-72. doi: 10.1016/j.ejphar.2008.05.043. Epub 2008 Jun 3.

PMID:
18585703
10.

The effects of curcumin on depressive-like behaviors in mice.

Xu Y, Ku BS, Yao HY, Lin YH, Ma X, Zhang YH, Li XJ.

Eur J Pharmacol. 2005 Jul 25;518(1):40-6.

PMID:
15987635
11.

Antidepressant-like effect of the novel MAO inhibitor 2-(3,4-dimethoxy-phenyl)-4,5-dihydro-1H-imidazole (2-DMPI) in mice.

Villarinho JG, Fachinetto R, de Vargas Pinheiro F, da Silva Sant'Anna G, Machado P, Dombrowski PA, da Cunha C, de Almeida Cabrini D, Pinto Martins MA, Gauze Bonacorso H, Zanatta N, Antonello Rubin M, Ferreira J.

Prog Neuropsychopharmacol Biol Psychiatry. 2012 Oct 1;39(1):31-9. doi: 10.1016/j.pnpbp.2012.04.007. Epub 2012 Apr 17.

12.

The antidepressant-like effect of fisetin involves the serotonergic and noradrenergic system.

Zhen L, Zhu J, Zhao X, Huang W, An Y, Li S, Du X, Lin M, Wang Q, Xu Y, Pan J.

Behav Brain Res. 2012 Mar 17;228(2):359-66. doi: 10.1016/j.bbr.2011.12.017. Epub 2011 Dec 19.

PMID:
22197297
13.

The antidepressant-like effects of glutamatergic drugs ketamine and AMPA receptor potentiator LY 451646 are preserved in bdnf⁺/⁻ heterozygous null mice.

Lindholm JS, Autio H, Vesa L, Antila H, Lindemann L, Hoener MC, Skolnick P, Rantamäki T, Castrén E.

Neuropharmacology. 2012 Jan;62(1):391-7. doi: 10.1016/j.neuropharm.2011.08.015. Epub 2011 Aug 16.

PMID:
21867718
14.

Preclinical evaluation of melanin-concentrating hormone receptor 1 antagonism for the treatment of obesity and depression.

Gehlert DR, Rasmussen K, Shaw J, Li X, Ardayfio P, Craft L, Coskun T, Zhang HY, Chen Y, Witkin JM.

J Pharmacol Exp Ther. 2009 May;329(2):429-38. doi: 10.1124/jpet.108.143362. Epub 2009 Jan 30.

15.

Antidepressant-like effect of 17beta-estradiol: involvement of dopaminergic, serotonergic, and (or) sigma-1 receptor systems.

Dhir A, Kulkarni SK.

Can J Physiol Pharmacol. 2008 Oct;86(10):726-35. doi: 10.1139/y08-077.

PMID:
18841177
16.

A role for MAP kinase signaling in behavioral models of depression and antidepressant treatment.

Duman CH, Schlesinger L, Kodama M, Russell DS, Duman RS.

Biol Psychiatry. 2007 Mar 1;61(5):661-70. Epub 2006 Aug 30.

PMID:
16945347
17.

Antidepressant-like pharmacological profile of 3-(4-fluorophenylselenyl)-2,5-diphenylselenophene: Involvement of serotonergic system.

Gay BM, Prigol M, Stein AL, Nogueira CW.

Neuropharmacology. 2010 Sep;59(3):172-9. doi: 10.1016/j.neuropharm.2010.05.003. Epub 2010 May 19.

PMID:
20488195
18.

Antidepressant-like behavioral effects of impaired cannabinoid receptor type 1 signaling coincide with exaggerated corticosterone secretion in mice.

Steiner MA, Marsicano G, Nestler EJ, Holsboer F, Lutz B, Wotjak CT.

Psychoneuroendocrinology. 2008 Jan;33(1):54-67. Epub 2007 Oct 31.

19.

Antidepressant-like effect of scopoletin, a coumarin isolated from Polygala sabulosa (Polygalaceae) in mice: evidence for the involvement of monoaminergic systems.

Capra JC, Cunha MP, Machado DG, Zomkowski AD, Mendes BG, Santos AR, Pizzolatti MG, Rodrigues AL.

Eur J Pharmacol. 2010 Sep 25;643(2-3):232-8. doi: 10.1016/j.ejphar.2010.06.043. Epub 2010 Jun 30.

PMID:
20599906
20.

Curcumin produces antidepressant effects via activating MAPK/ERK-dependent brain-derived neurotrophic factor expression in the amygdala of mice.

Zhang L, Xu T, Wang S, Yu L, Liu D, Zhan R, Yu SY.

Behav Brain Res. 2012 Nov 1;235(1):67-72. doi: 10.1016/j.bbr.2012.07.019. Epub 2012 Jul 20.

PMID:
22820234

Supplemental Content

Support Center