Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

Heteroepitaxial growth of GaP/ZnS nanocable with superior optoelectronic response.

Hu L, Brewster MM, Xu X, Tang C, Gradečak S, Fang X.

Nano Lett. 2013 May 8;13(5):1941-7. doi: 10.1021/nl3046552. Epub 2013 Apr 16.

PMID:
23573775
2.

Single crystalline wurtzite ZnO/zinc blende ZnS coaxial heterojunctions and hollow zinc blende ZnS nanotubes: synthesis, structural characterization and optical properties.

Huang X, Willinger MG, Fan H, Xie ZL, Wang L, Klein-Hoffmann A, Girgsdies F, Lee CS, Meng XM.

Nanoscale. 2014 Aug 7;6(15):8787-95. doi: 10.1039/c4nr01575d.

PMID:
24954555
3.

GaP-ZnS pseudobinary alloy nanowires.

Park K, Lee JA, Im HS, Jung CS, Kim HS, Park J, Lee CL.

Nano Lett. 2014 Oct 8;14(10):5912-9. doi: 10.1021/nl5028843. Epub 2014 Sep 22.

PMID:
25234711
4.

Assembly of three-dimensional hetero-epitaxial ZnO/ZnS core/shell nanorod and single crystalline hollow ZnS nanotube arrays.

Huang X, Wang M, Willinger MG, Shao L, Su DS, Meng XM.

ACS Nano. 2012 Aug 28;6(8):7333-9. doi: 10.1021/nn3024514. Epub 2012 Aug 10. Erratum in: ACS Nano. 2012 Oct 23;6(10):9347.

PMID:
22861378
5.

Composition-tuned ZnO--CdSSe core--shell nanowire arrays.

Myung Y, Jang DM, Sung TK, Sohn YJ, Jung GB, Cho YJ, Kim HS, Park J.

ACS Nano. 2010 Jul 27;4(7):3789-800. doi: 10.1021/nn100684q.

PMID:
20527802
6.

Nanocable-aligned ZnS tetrapod nanocrystals.

Zhu YC, Bando Y, Xue DF, Golberg D.

J Am Chem Soc. 2003 Dec 31;125(52):16196-7.

PMID:
14692754
7.

Structural Origin of the Band Gap Anomaly of Quaternary Alloy Cd(x)Zn(1-x)S(y)Se(1-y) Nanowires, Nanobelts, and Nanosheets in the Visible Spectrum.

Kwon SJ, Jeong HM, Jung K, Ko DH, Ko H, Han IK, Kim GT, Park JG.

ACS Nano. 2015 May 26;9(5):5486-99. doi: 10.1021/acsnano.5b01472. Epub 2015 Apr 23.

PMID:
25897466
8.

One-Step Synthesis of Single-Wall Carbon Nanotube-ZnS Core-Shell Nanocables.

Zhang Y, He X, Wang L, Gao J, Li J.

Materials (Basel). 2016 Aug 24;9(9). pii: E718. doi: 10.3390/ma9090718.

9.

Coaxial ZnSe/Si nanocables with controlled p-type shell doping.

Wang L, Jie J, Wu C, Wang Z, Yu Y, Peng Q, Zhang X, Hu Z, Wu D, Guo H, Jiang Y.

Nanotechnology. 2010 Jul 16;21(28):285206. doi: 10.1088/0957-4484/21/28/285206. Epub 2010 Jun 28.

PMID:
20585155
10.

Heterostructured ZnS/InP nanowires for rigid/flexible ultraviolet photodetectors with enhanced performance.

Zhang K, Ding J, Lou Z, Chai R, Zhong M, Shen G.

Nanoscale. 2017 Oct 19;9(40):15416-15422. doi: 10.1039/c7nr06118h.

PMID:
28975950
11.

Polarity-Free Epitaxial Growth of Heterostructured ZnO/ZnS Core/Shell Nanobelts.

Huang X, Wang M, Shao L, Willinger MG, Lee CS, Meng XM.

J Phys Chem Lett. 2013 Mar 7;4(5):740-4. doi: 10.1021/jz4001533. Epub 2013 Feb 15.

PMID:
26281928
12.

Gold/boron core-shell nanocables synthesized from gold-boron eutectic droplets.

Li ZZ, Baca J, Yun SH, Wu J.

Nanotechnology. 2008 Feb 6;19(5):055606. doi: 10.1088/0957-4484/19/05/055606. Epub 2008 Jan 14.

PMID:
21817614
13.

Lasing of CdSe/SiO2 nanocables synthesized by the facile chemical vapor deposition method.

Ye Y, Ma Y, Yue S, Dai L, Meng H, Li Z, Tong L, Qin G.

Nanoscale. 2011 Aug;3(8):3072-5. doi: 10.1039/c1nr10392j. Epub 2011 Jun 23.

PMID:
21698327
14.

Aligned Zn-Zn2SiO4 core-shell nanocables with homogeneously intense ultraviolet emission at 300 nm.

Feng X, Yuan X, Sekiguchi T, Lin W, Kang J.

J Phys Chem B. 2005 Aug 25;109(33):15786-90.

PMID:
16853004
15.

Single- and double-shelled coaxial nanocables of GaP with silicon oxide and carbon.

Bae SY, Seo HW, Choi HC, Han DS, Park J.

J Phys Chem B. 2005 May 5;109(17):8496-502.

PMID:
16851998
16.

Ultraviolet photodetectors with high photosensitivity based on type-II ZnS/SnO2 core/shell heterostructured ribbons.

Huang X, Yu YQ, Xia J, Fan H, Wang L, Willinger MG, Yang XP, Jiang Y, Zhang TR, Meng XM.

Nanoscale. 2015 Mar 12;7(12):5311-9. doi: 10.1039/c5nr00150a.

PMID:
25721309
17.
18.

High-performance ultraviolet photodetectors based on solution-grown ZnS nanobelts sandwiched between graphene layers.

Kim Y, Kim SJ, Cho SP, Hong BH, Jang DJ.

Sci Rep. 2015 Jul 22;5:12345. doi: 10.1038/srep12345.

19.

Kinetically controlled synthesis of wurtzite ZnS nanorods through mild thermolysis of a covalent organic-inorganic network.

Chen X, Xu H, Xu N, Zhao F, Lin W, Lin G, Fu Y, Huang Z, Wang H, Wu M.

Inorg Chem. 2003 May 5;42(9):3100-6.

PMID:
12716207
20.

Dual roles of ZnS thin layers in significant photocurrent enhancement of ZnO/CdTe nanocable arrays photoanode.

Wang X, Liu R, Wang T, Wang B, Xu Y, Wang H.

ACS Appl Mater Interfaces. 2013 Apr 24;5(8):3312-6. doi: 10.1021/am4003793. Epub 2013 Apr 4.

PMID:
23517239

Supplemental Content

Support Center