Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 127

1.

Enhanced photoelectrochemical performance of composite photovoltaic cells of Li(+)@C60-sulphonated porphyrin supramolecular nanoclusters.

Ohkubo K, Kawashima Y, Sakai H, Hasobe T, Fukuzumi S.

Chem Commun (Camb). 2013 May 18;49(40):4474-6. doi: 10.1039/c3cc41187g. Epub 2013 Apr 10.

PMID:
23571318
2.

Strong supramolecular binding of Li(+)@C60 with sulfonated meso-tetraphenylporphyrins and long-lived photoinduced charge separation.

Ohkubo K, Kawashima Y, Fukuzumi S.

Chem Commun (Camb). 2012 May 7;48(36):4314-6. doi: 10.1039/c2cc31186k. Epub 2012 Mar 26.

PMID:
22450933
3.

Efficient charge separation in Li(+) @C60 supramolecular complexes with electron donors.

Kawashima Y, Ohkubo K, Fukuzumi S.

Chem Asian J. 2015 Jan;10(1):44-54. doi: 10.1002/asia.201403075. Epub 2014 Nov 12.

PMID:
25393356
4.

Near-Infrared Photoelectrochemical Conversion via Photoinduced Charge Separation in Supramolecular Complexes of Anionic Phthalocyanines with Li(+)@C60.

Kawashima Y, Ohkubo K, Blas-Ferrando VM, Sakai H, Font-Sanchis E, Ortíz J, Fernández-Lázaro F, Hasobe T, Sastre-Santos Á, Fukuzumi S.

J Phys Chem B. 2015 Jun 18;119(24):7690-7. doi: 10.1021/jp5123163. Epub 2015 Feb 9.

PMID:
25615010
5.

Supramolecular assemblies of tripodal porphyrin hosts and C60.

Tong LH, Wietor JL, Clegg W, Raithby PR, Pascu SI, Sanders JK.

Chemistry. 2008;14(10):3035-44. doi: 10.1002/chem.200701686.

PMID:
18293350
6.

Multiple photosynthetic reaction centres of porphyrinic polypeptide-Li(+)@C60 supramolecular complexes.

Ohkubo K, Hasegawa T, Rein R, Solladié N, Fukuzumi S.

Chem Commun (Camb). 2015 Dec 25;51(99):17517-20. doi: 10.1039/c5cc07203d.

PMID:
26497396
7.

Self-organization of porphyrins and fullerenes for molecular photoelectrochemical devices.

Umeyama T, Imahori H.

Photosynth Res. 2006 Jan;87(1):63-71. Epub 2006 Jan 9. Review.

PMID:
16408146
8.

Long-lived photoinduced charge separation for solar cell applications in supramolecular complexes of multi-metalloporphyrins and fullerenes.

Fukuzumi S, Ohkubo K.

Dalton Trans. 2013 Dec 7;42(45):15846-58. doi: 10.1039/c3dt51883c. Epub 2013 Oct 21.

PMID:
24141827
9.

Photoinduced electron transfer in a supramolecular triad produced by porphyrin anion-induced electron transfer from tetrathiafulvalene calix[4]pyrrole to Li(+)@C60.

Davis CM, Ohkubo K, Lammer AD, Kim DS, Kawashima Y, Sessler JL, Fukuzumi S.

Chem Commun (Camb). 2015 Jun 18;51(48):9789-92. doi: 10.1039/c5cc03061g.

PMID:
25990787
10.

Enhancement of light-energy conversion efficiency by multi-porphyrin arrays of porphyrin-peptide oligomers with fullerene clusters.

Hasobe T, Kamat PV, Troiani V, Solladié N, Ahn TK, Kim SK, Kim D, Kongkanand A, Kuwabata S, Fukuzumi S.

J Phys Chem B. 2005 Jan 13;109(1):19-23.

PMID:
16850975
11.

Physicochemical insights in supramolecular interaction of fullerenes C60 and C70 with a monoporphyrin in presence of silver nanoparticles.

Mitra R, Chattopadhyay S, Bhattacharya S.

Spectrochim Acta A Mol Biomol Spectrosc. 2012 Apr;89:284-93. doi: 10.1016/j.saa.2011.12.013. Epub 2011 Dec 19.

PMID:
22277621
12.

STM investigation of temperature-dependent two-dimensional supramolecular architectures of C60 and amino-tetraphenylporphyrin on Ag(110).

Di Marino M, Sedona F, Sambi M, Carofiglio T, Lubian E, Casarin M, Tondello E.

Langmuir. 2010 Feb 16;26(4):2466-72. doi: 10.1021/la9026927.

PMID:
19810724
13.

Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles.

Hasobe T, Imahori H, Kamat PV, Ahn TK, Kim SK, Kim D, Fujimoto A, Hirakawa T, Fukuzumi S.

J Am Chem Soc. 2005 Feb 2;127(4):1216-28.

PMID:
15669861
14.

Supramolecular structures and photoelectronic properties of the inclusion complex of a cyclic free-base porphyrin dimer and C60.

Nobukuni H, Shimazaki Y, Uno H, Naruta Y, Ohkubo K, Kojima T, Fukuzumi S, Seki S, Sakai H, Hasobe T, Tani F.

Chemistry. 2010 Oct 11;16(38):11611-23. doi: 10.1002/chem.201001815. Epub 2010 Aug 30.

PMID:
20806299
15.

A supramolecular photosynthetic triad of slipped cofacial porphyrin dimer, ferrocene, and fullerene.

Nakagawa H, Ogawa K, Satake A, Kobuke Y.

Chem Commun (Camb). 2006 Apr 14;(14):1560-2. Epub 2006 Mar 7.

PMID:
16575460
16.

A porphyrin-fullerene dyad with a supramolecular "double-cable" structure as a novel electron acceptor for bulk heterojunction polymer solar cells.

Wang CL, Zhang WB, Van Horn RM, Tu Y, Gong X, Cheng SZ, Sun Y, Tong M, Seo J, Hsu BB, Heeger AJ.

Adv Mater. 2011 Jul 12;23(26):2951-6. doi: 10.1002/adma.201100399. Epub 2011 May 17. No abstract available.

PMID:
21590812
17.

Supramolecular triad and pentad composed of zinc-porphyrin(s), oxoporphyrinogen, and fullerene(s): design and electron-transfer studies.

Schumacher AL, Sandanayaka AS, Hill JP, Ariga K, Karr PA, Araki Y, Ito O, D'Souza F.

Chemistry. 2007;13(16):4628-35.

PMID:
17385764
18.

Supramolecular porphyrin-fullerene via 'two-point' binding strategy: axial-coordination and cation-crown ether complexation.

D'Souza F, Chitta R, Gadde S, Zandler ME, Sandanayaka AS, Araki Y, Ito O.

Chem Commun (Camb). 2005 Mar 14;(10):1279-81. Epub 2005 Jan 19.

PMID:
15742051
19.

Tuning the properties of polymer bulk heterojunction solar cells by adjusting fullerene size to control intercalation.

Cates NC, Gysel R, Beiley Z, Miller CE, Toney MF, Heeney M, McCulloch I, McGehee MD.

Nano Lett. 2009 Dec;9(12):4153-7. doi: 10.1021/nl9023808.

PMID:
19780570
20.

Photoelectrochemical properties of supramolecular composite of fullerene nanoclusters and 9-mesityl-10-carboxymethylacridinium ion on SnO2.

Hasobe T, Hattori S, Kotani H, Ohkubo K, Hosomizu K, Imahori H, Kamat PV, Fukuzumi S.

Org Lett. 2004 Sep 2;6(18):3103-6.

PMID:
15330598

Supplemental Content

Support Center