Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 140

1.

Removal of a C-terminal serine residue proximal to the inter-chain disulfide bond of a human IgG1 lambda light chain mediates enhanced antibody stability and antibody dependent cell-mediated cytotoxicity.

Shen Y, Zeng L, Zhu A, Blanc T, Patel D, Pennello A, Bari A, Ng S, Persaud K, Kang YK, Balderes P, Surguladze D, Hindi S, Zhou Q, Ludwig DL, Snavely M.

MAbs. 2013 May-Jun;5(3):418-31. doi: 10.4161/mabs.24291. Epub 2013 Apr 8.

2.

Relative stabilities of IgG1 and IgG4 Fab domains: influence of the light-heavy interchain disulfide bond architecture.

Heads JT, Adams R, D'Hooghe LE, Page MJ, Humphreys DP, Popplewell AG, Lawson AD, Henry AJ.

Protein Sci. 2012 Sep;21(9):1315-22. doi: 10.1002/pro.2118. Epub 2012 Aug 9.

3.

Engineering an improved IgG4 molecule with reduced disulfide bond heterogeneity and increased Fab domain thermal stability.

Peters SJ, Smales CM, Henry AJ, Stephens PE, West S, Humphreys DP.

J Biol Chem. 2012 Jul 13;287(29):24525-33. doi: 10.1074/jbc.M112.369744. Epub 2012 May 18.

4.

Effect of the light chain C-terminal serine residue on disulfide bond susceptibility of human immunoglobulin G1λ.

Liu H, Zhong S, Chumsae C, Radziejewski C, Hsieh CM.

Anal Biochem. 2011 Jan 15;408(2):277-83. doi: 10.1016/j.ab.2010.09.025. Epub 2010 Oct 8.

PMID:
20869344
5.

Control of IgG LC:HC ratio in stably transfected CHO cells and study of the impact on expression, aggregation, glycosylation and conformational stability.

Ho SC, Koh EY, van Beers M, Mueller M, Wan C, Teo G, Song Z, Tong YW, Bardor M, Yang Y.

J Biotechnol. 2013 Jun 10;165(3-4):157-66. doi: 10.1016/j.jbiotec.2013.03.019. Epub 2013 Apr 10.

PMID:
23583871
6.

Ranking the susceptibility of disulfide bonds in human IgG1 antibodies by reduction, differential alkylation, and LC-MS analysis.

Liu H, Chumsae C, Gaza-Bulseco G, Hurkmans K, Radziejewski CH.

Anal Chem. 2010 Jun 15;82(12):5219-26. doi: 10.1021/ac100575n.

PMID:
20491447
7.

Comparison of internal ribosome entry site (IRES) and Furin-2A (F2A) for monoclonal antibody expression level and quality in CHO cells.

Ho SC, Bardor M, Li B, Lee JJ, Song Z, Tong YW, Goh LT, Yang Y.

PLoS One. 2013 May 21;8(5):e63247. doi: 10.1371/journal.pone.0063247. Print 2013.

8.

N-terminal or signal peptide sequence engineering prevents truncation of human monoclonal antibody light chains.

Gibson SJ, Bond NJ, Milne S, Lewis A, Sheriff A, Pettman G, Pradhan R, Higazi DR, Hatton D.

Biotechnol Bioeng. 2017 Sep;114(9):1970-1977. doi: 10.1002/bit.26301. Epub 2017 May 8.

PMID:
28369727
9.

A general strategy for generating intact, full-length IgG antibodies that penetrate into the cytosol of living cells.

Choi DK, Bae J, Shin SM, Shin JY, Kim S, Kim YS.

MAbs. 2014;6(6):1402-14. doi: 10.4161/mabs.36389.

10.

On the optimal ratio of heavy to light chain genes for efficient recombinant antibody production by CHO cells.

Schlatter S, Stansfield SH, Dinnis DM, Racher AJ, Birch JR, James DC.

Biotechnol Prog. 2005 Jan-Feb;21(1):122-33.

PMID:
15903249
11.

Human IgG3 can adopt the disulfide bond pattern characteristic for IgG1 without resembling it in complement mediated cell lysis.

Brekke OH, Bremnes B, Sandin R, Aase A, Michaelsen TE, Sandlie I.

Mol Immunol. 1993 Nov;30(16):1419-25.

PMID:
8232327
12.

Rapid identification of an antibody DNA construct rearrangement sequence variant by mass spectrometry.

Scott RA, Rogers R, Balland A, Brady LJ.

MAbs. 2014;6(6):1453-63. doi: 10.4161/mabs.36222.

13.

Cysteine racemization on IgG heavy and light chains.

Zhang Q, Flynn GC.

J Biol Chem. 2013 Nov 29;288(48):34325-35. doi: 10.1074/jbc.M113.506915. Epub 2013 Oct 18.

14.

Optimization of heavy chain and light chain signal peptides for high level expression of therapeutic antibodies in CHO cells.

Haryadi R, Ho S, Kok YJ, Pu HX, Zheng L, Pereira NA, Li B, Bi X, Goh LT, Yang Y, Song Z.

PLoS One. 2015 Feb 23;10(2):e0116878. doi: 10.1371/journal.pone.0116878. eCollection 2015.

15.

Cleavage efficient 2A peptides for high level monoclonal antibody expression in CHO cells.

Chng J, Wang T, Nian R, Lau A, Hoi KM, Ho SC, Gagnon P, Bi X, Yang Y.

MAbs. 2015;7(2):403-12. doi: 10.1080/19420862.2015.1008351.

16.

Triple light chain antibodies: factors that influence its formation in cell culture.

Gomez N, Vinson AR, Ouyang J, Nguyen MD, Chen XN, Sharma VK, Yuk IH.

Biotechnol Bioeng. 2010 Mar 1;105(4):748-60. doi: 10.1002/bit.22580.

PMID:
19845001
17.

Role of inter-heavy and light chain disulfide bonds in the effector functions of human immunoglobulin IgG1.

Dorai H, Wesolowski JS, Gillies SD.

Mol Immunol. 1992 Dec;29(12):1487-91.

PMID:
1454066
19.

IgG Aggregation Mechanism for CHO Cell Lines Expressing Excess Heavy Chains.

Ho SC, Wang T, Song Z, Yang Y.

Mol Biotechnol. 2015 Jul;57(7):625-34. doi: 10.1007/s12033-015-9852-7.

PMID:
25744439
20.

IgG1 thioether bond formation in vivo.

Zhang Q, Schenauer MR, McCarter JD, Flynn GC.

J Biol Chem. 2013 Jun 7;288(23):16371-82. doi: 10.1074/jbc.M113.468397. Epub 2013 Apr 25.

Supplemental Content

Support Center