Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 91

1.

Improving risk classification of critical illness with biomarkers: a simulation study.

Seymour CW, Cooke CR, Wang Z, Kerr KF, Yealy DM, Angus DC, Rea TD, Kahn JM, Pepe MS.

J Crit Care. 2013 Oct;28(5):541-8. doi: 10.1016/j.jcrc.2012.12.001. Epub 2013 Apr 6.

2.

Prediction of critical illness during out-of-hospital emergency care.

Seymour CW, Kahn JM, Cooke CR, Watkins TR, Heckbert SR, Rea TD.

JAMA. 2010 Aug 18;304(7):747-54. doi: 10.1001/jama.2010.1140.

3.

Improvement in stroke risk prediction: role of C-reactive protein and lipoprotein-associated phospholipase A2 in the women's health initiative.

Wassertheil-Smoller S, McGinn A, Allison M, Ca T, Curb D, Eaton C, Hendrix S, Kaplan R, Ko M, Martin LW, Xue X.

Int J Stroke. 2014 Oct;9(7):902-9. doi: 10.1111/j.1747-4949.2012.00860.x. Epub 2012 Oct 23.

4.

Multiple biomarkers for risk prediction in chronic heart failure.

Ky B, French B, Levy WC, Sweitzer NK, Fang JC, Wu AH, Goldberg LR, Jessup M, Cappola TP.

Circ Heart Fail. 2012 Mar 1;5(2):183-90. doi: 10.1161/CIRCHEARTFAILURE.111.965020. Epub 2012 Feb 23.

5.

A simple tool to predict admission at the time of triage.

Cameron A, Rodgers K, Ireland A, Jamdar R, McKay GA.

Emerg Med J. 2015 Mar;32(3):174-9. doi: 10.1136/emermed-2013-203200. Epub 2014 Jan 13.

6.

Predicting hospital admissions at emergency department triage using routine administrative data.

Sun Y, Heng BH, Tay SY, Seow E.

Acad Emerg Med. 2011 Aug;18(8):844-50. doi: 10.1111/j.1553-2712.2011.01125.x.

7.

Evaluation of a hospital admission prediction model adding coded chief complaint data using neural network methodology.

Handly N, Thompson DA, Li J, Chuirazzi DM, Venkat A.

Eur J Emerg Med. 2015 Apr;22(2):87-91. doi: 10.1097/MEJ.0000000000000126.

PMID:
24509606
8.

Relative Hyperglycemia, a Marker of Critical Illness: Introducing the Stress Hyperglycemia Ratio.

Roberts GW, Quinn SJ, Valentine N, Alhawassi T, O'Dea H, Stranks SN, Burt MG, Doogue MP.

J Clin Endocrinol Metab. 2015 Dec;100(12):4490-7. doi: 10.1210/jc.2015-2660. Epub 2015 Oct 20.

PMID:
26485219
9.

Is the Modified Early Warning Score (MEWS) superior to clinician judgement in detecting critical illness in the pre-hospital environment?

Fullerton JN, Price CL, Silvey NE, Brace SJ, Perkins GD.

Resuscitation. 2012 May;83(5):557-62. doi: 10.1016/j.resuscitation.2012.01.004. Epub 2012 Jan 14.

PMID:
22248688
10.

The PAndemic INfluenza Triage in the Emergency Department (PAINTED) pilot cohort study.

Goodacre S, Irving A, Wilson R, Beever D, Challen K.

Health Technol Assess. 2015 Jan;19(3):v-xxi, 1-69. doi: 10.3310/hta19030.

11.

Predictors of critical care admission in emergency department patients triaged as low to moderate urgency.

Considine J, Thomas S, Potter R.

J Adv Nurs. 2009 Apr;65(4):818-27. doi: 10.1111/j.1365-2648.2008.04938.x. Epub 2009 Feb 9.

PMID:
19228236
12.

A new score for risk stratification of patients with acute coronary syndromes undergoing percutaneous coronary intervention: the ACUITY-PCI (Acute Catheterization and Urgent Intervention Triage Strategy-Percutaneous Coronary Intervention) risk score.

Palmerini T, Genereux P, Caixeta A, Cristea E, Lansky A, Mehran R, Della Riva D, Fahy M, Xu K, Stone GW.

JACC Cardiovasc Interv. 2012 Nov;5(11):1108-16. doi: 10.1016/j.jcin.2012.07.011.

13.

The formation and design of the TRIAGE study--baseline data on 6005 consecutive patients admitted to hospital from the emergency department.

Plesner LL, Iversen AK, Langkjær S, Nielsen TL, Østervig R, Warming PE, Salam IA, Kristensen M, Schou M, Eugen-Olsen J, Forberg JL, Køber L, Rasmussen LS, Sölétormos G, Pedersen BK, Iversen K.

Scand J Trauma Resusc Emerg Med. 2015 Dec 1;23:106. doi: 10.1186/s13049-015-0184-1.

14.

Nurse-administered early warning score system can be used for emergency department triage.

Christensen D, Jensen NM, Maaløe R, Rudolph SS, Belhage B, Perrild H.

Dan Med Bull. 2011 Jun;58(6):A4221.

PMID:
21651873
15.

Collectives of diagnostic biomarkers identify high-risk subpopulations of hematuria patients: exploiting heterogeneity in large-scale biomarker data.

Emmert-Streib F, Abogunrin F, de Matos Simoes R, Duggan B, Ruddock MW, Reid CN, Roddy O, White L, O'Kane HF, O'Rourke D, Anderson NH, Nambirajan T, Williamson KE.

BMC Med. 2013 Jan 17;11:12. doi: 10.1186/1741-7015-11-12.

16.

Assessing critical illness during emergency medical services care.

Wang HE, Yealy DM.

JAMA. 2010 Aug 18;304(7):797-8. doi: 10.1001/jama.2010.1175. No abstract available.

PMID:
20716746
17.

Using age, triage score, and disposition data from emergency department electronic records to improve Influenza-like illness surveillance.

Savard N, Bédard L, Allard R, Buckeridge DL.

J Am Med Inform Assoc. 2015 May;22(3):688-96. doi: 10.1093/jamia/ocu002. Epub 2015 Feb 26.

PMID:
25725005
18.
19.

Predictive validity comparison of two five-level triage acuity scales.

Worster A, Fernandes CM, Eva K, Upadhye S.

Eur J Emerg Med. 2007 Aug;14(4):188-92.

PMID:
17620907
20.

Prealbumin improves death risk prediction of BNP-added Seattle Heart Failure Model: results from a pilot study in elderly chronic heart failure patients.

Cabassi A, de Champlain J, Maggiore U, Parenti E, Coghi P, Vicini V, Tedeschi S, Cremaschi E, Binno S, Rocco R, Bonali S, Bianconcini M, Guerra C, Folesani G, Montanari A, Regolisti G, Fiaccadori E.

Int J Cardiol. 2013 Oct 9;168(4):3334-9. doi: 10.1016/j.ijcard.2013.04.039. Epub 2013 Apr 25.

PMID:
23623341

Supplemental Content

Support Center