Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

The presence of a symbiotic bacterium in Strigomonas culicis is related to differential ecto-phosphatase activity and influences the mosquito-protozoa interaction.

Catta-Preta CM, Nascimento MT, Garcia MC, Saraiva EM, Motta MC, Meyer-Fernandes JR.

Int J Parasitol. 2013 Jun;43(7):571-7. doi: 10.1016/j.ijpara.2013.02.005. Epub 2013 Apr 4.

PMID:
23562935
2.

Interaction of the monoxenic trypanosomatid Blastocrithidia culicis with the Aedes aegypti salivary gland.

Nascimento MT, Garcia MC, da Silva KP, Pinto-da-Silva LH, Atella GC, Motta MC, Saraiva EM.

Acta Trop. 2010 Mar;113(3):269-78. doi: 10.1016/j.actatropica.2009.11.010. Epub 2009 Dec 3.

PMID:
19962365
3.

Influence of the endosymbiont of Blastocrithidia culicis and Crithidia deanei on the glycoconjugate expression and on Aedes aegypti interaction.

d'Avila-Levy CM, Silva BA, Hayashi EA, Vermelho AB, Alviano CS, Saraiva EM, Branquinha MH, Santos AL.

FEMS Microbiol Lett. 2005 Nov 15;252(2):279-86. Epub 2005 Sep 22.

4.

Structural characterization of the cell division cycle in Strigomonas culicis, an endosymbiont-bearing trypanosomatid.

Brum FL, Catta-Preta CM, de Souza W, Schenkman S, Elias MC, Motta MC.

Microsc Microanal. 2014 Feb;20(1):228-37. doi: 10.1017/S1431927613013925. Epub 2014 Jan 3.

PMID:
24397934
5.

Colonization of Aedes aegypti midgut by the endosymbiont-bearing trypanosomatid Blastocrithidia culicis.

Corrêa-da-Silva MS, Fampa P, Lessa LP, Silva Edos R, dos Santos Mallet JR, Saraiva EM, Motta MC.

Parasitol Res. 2006 Sep;99(4):384-91. Epub 2006 Mar 30.

PMID:
16572337
6.

Predicting the proteins of Angomonas deanei, Strigomonas culicis and their respective endosymbionts reveals new aspects of the trypanosomatidae family.

Motta MC, Martins AC, de Souza SS, Catta-Preta CM, Silva R, Klein CC, de Almeida LG, de Lima Cunha O, Ciapina LP, Brocchi M, Colabardini AC, de Araujo Lima B, Machado CR, de Almeida Soares CM, Probst CM, de Menezes CB, Thompson CE, Bartholomeu DC, Gradia DF, Pavoni DP, Grisard EC, Fantinatti-Garboggini F, Marchini FK, Rodrigues-Luiz GF, Wagner G, Goldman GH, Fietto JL, Elias MC, Goldman MH, Sagot MF, Pereira M, Stoco PH, de Mendonça-Neto RP, Teixeira SM, Maciel TE, de Oliveira Mendes TA, Ürményi TP, de Souza W, Schenkman S, de Vasconcelos AT.

PLoS One. 2013;8(4):e60209. doi: 10.1371/journal.pone.0060209. Epub 2013 Apr 3.

7.

The Symbiotic Bacterium Fuels the Energy Metabolism of the Host Trypanosomatid Strigomonas culicis.

Loyola-Machado AC, Azevedo-Martins AC, Catta-Preta CM, de Souza W, Galina A, Motta MC.

Protist. 2017 Feb 28;168(2):253-269. doi: 10.1016/j.protis.2017.02.001. [Epub ahead of print]

PMID:
28371652
8.

Mitochondrial respiration and genomic analysis provide insight into the influence of the symbiotic bacterium on host trypanosomatid oxygen consumption.

Azevedo-Martins AC, Machado AC, Klein CC, Ciapina L, Gonzaga L, Vasconcelos AT, Sagot MF, DE Souza W, Einicker-Lamas M, Galina A, Motta MC.

Parasitology. 2015 Feb;142(2):352-62. doi: 10.1017/S0031182014001139. Epub 2014 Aug 27.

PMID:
25160925
9.

Ecto-phosphatase activity on the external surface of Rhodnius prolixus salivary glands: modulation by carbohydrates and Trypanosoma rangeli.

Gomes SA, Fonseca de Souza AL, Kiffer-Moreira T, Dick CF, dos Santos AL, Meyer-Fernandes JR.

Acta Trop. 2008 May;106(2):137-42. doi: 10.1016/j.actatropica.2008.02.008. Epub 2008 Mar 6.

PMID:
18407240
10.

Endosymbiosis in protozoa of the Trypanosomatidae family.

de Souza W, Motta MC.

FEMS Microbiol Lett. 1999 Apr 1;173(1):1-8. Review.

11.

Interaction between Trypanosoma rangeli and the Rhodnius prolixus salivary gland depends on the phosphotyrosine ecto-phosphatase activity of the parasite.

Dos-Santos AL, Dick CF, Alves-Bezerra M, Silveira TS, Paes LS, Gondim KC, Meyer-Fernandes JR.

Int J Parasitol. 2012 Aug;42(9):819-27. doi: 10.1016/j.ijpara.2012.05.011. Epub 2012 Jun 26.

PMID:
22749957
12.

Interaction of insect trypanosomatids with mosquitoes, sand fly and the respective insect cell lines.

Fampa P, Corrêa-da-Silva MS, Lima DC, Oliveira SM, Motta MC, Saraiva EM.

Int J Parasitol. 2003 Sep 15;33(10):1019-26.

PMID:
13129523
13.

Endosymbiosis in trypanosomatid protozoa: the bacterium division is controlled during the host cell cycle.

Catta-Preta CM, Brum FL, da Silva CC, Zuma AA, Elias MC, de Souza W, Schenkman S, Motta MC.

Front Microbiol. 2015 Jun 2;6:520. doi: 10.3389/fmicb.2015.00520. eCollection 2015.

14.

The microtubule analog protein, FtsZ, in the endosymbiont of trypanosomatid protozoa.

Motta MC, Picchi GF, Palmié-Peixoto IV, Rocha MR, de Carvalho TM, Morgado-Diaz J, de Souza W, Goldenberg S, Fragoso SP.

J Eukaryot Microbiol. 2004 Jul-Aug;51(4):394-401.

PMID:
15352321
15.

Expression of calpain-like proteins and effects of calpain inhibitors on the growth rate of Angomonas deanei wild type and aposymbiotic strains.

de Oliveira SS, Garcia-Gomes Ados S, d'Avila-Levy CM, dos Santos AL, Branquinha MH.

BMC Microbiol. 2015 Sep 29;15:188. doi: 10.1186/s12866-015-0519-0.

16.

Crithidia deanei: influence of parasite gp63 homologue on the interaction of endosymbiont-harboring and aposymbiotic strains with Aedes aegypti midgut.

d'Avila-Levy CM, Santos LO, Marinho FA, Matteoli FP, Lopes AH, Motta MC, Santos AL, Branquinha MH.

Exp Parasitol. 2008 Mar;118(3):345-53. Epub 2007 Sep 15.

PMID:
17945218
17.

Biochemical and phylogenetic analyses of phosphatidylinositol production in Angomonas deanei, an endosymbiont-harboring trypanosomatid.

de Azevedo-Martins AC, Alves JM, de Mello FG, Vasconcelos AT, de Souza W, Einicker-Lamas M, Motta MC.

Parasit Vectors. 2015 Apr 24;8:247. doi: 10.1186/s13071-015-0854-x.

18.

Proteolytic expression in Blastocrithidia culicis: influence of the endosymbiont and similarities with virulence factors of pathogenic trypanosomatids.

D'Avila-Levy CM, Araújo FM, Vermelho AB, Soares RM, Santos AL, Branquinha MH.

Parasitology. 2005 Apr;130(Pt 4):413-20.

PMID:
15830815
19.
20.

Molting-associated suppression of symbiont population and up-regulation of antimicrobial activity in the midgut symbiotic organ of the Riptortus-Burkholderia symbiosis.

Kim JK, Han SH, Kim CH, Jo YH, Futahashi R, Kikuchi Y, Fukatsu T, Lee BL.

Dev Comp Immunol. 2014 Mar;43(1):10-4. doi: 10.1016/j.dci.2013.10.010. Epub 2013 Nov 4.

PMID:
24201132

Supplemental Content

Support Center