Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 77

1.

Sequential shift of energy production pathways at the fetal stage and during lifetime.

Abo T.

Med Hypotheses. 2013 Jun;80(6):813-5. doi: 10.1016/j.mehy.2013.03.018. Epub 2013 Apr 1.

PMID:
23557848
2.

Reassessment of FDG uptake in tumor cells: high FDG uptake as a reflection of oxygen-independent glycolysis dominant energy production.

Waki A, Fujibayashi Y, Yonekura Y, Sadato N, Ishii Y, Yokoyama A.

Nucl Med Biol. 1997 Oct;24(7):665-70.

PMID:
9352538
3.

Energy metabolism of leukemia cells: glycolysis versus oxidative phosphorylation.

Suganuma K, Miwa H, Imai N, Shikami M, Gotou M, Goto M, Mizuno S, Takahashi M, Yamamoto H, Hiramatsu A, Wakabayashi M, Watarai M, Hanamura I, Imamura A, Mihara H, Nitta M.

Leuk Lymphoma. 2010 Nov;51(11):2112-9. doi: 10.3109/10428194.2010.512966. Epub 2010 Sep 22.

PMID:
20860495
4.

Energy metabolism in tumor cells.

Moreno-Sánchez R, Rodríguez-Enríquez S, Marín-Hernández A, Saavedra E.

FEBS J. 2007 Mar;274(6):1393-418. Review.

5.

Age-related changes in ATP-producing pathways in human skeletal muscle in vivo.

Lanza IR, Befroy DE, Kent-Braun JA.

J Appl Physiol (1985). 2005 Nov;99(5):1736-44. Epub 2005 Jul 7.

6.

Citrinin affects the oxidative metabolism of BHK-21 cells.

Chagas GM, Campello AP, Kluppel ML, Oliveira BM.

Cell Biochem Funct. 1995 Dec;13(4):267-71.

PMID:
8565147
7.

Balancing glycolysis and mitochondrial OXPHOS: lessons from the hematopoietic system and exercising muscles.

Haran M, Gross A.

Mitochondrion. 2014 Nov;19 Pt A:3-7. doi: 10.1016/j.mito.2014.09.007. Epub 2014 Sep 28. Review.

PMID:
25264322
8.
9.

The appropriation of glucose through primate neurodevelopment.

Bauernfeind AL, Babbitt CC.

J Hum Evol. 2014 Dec;77:132-40. doi: 10.1016/j.jhevol.2014.05.016. Epub 2014 Aug 7. Review.

PMID:
25110208
10.

Differential utilization of two ATP-generating pathways is regulated by p53.

Assaily W, Benchimol S.

Cancer Cell. 2006 Jul;10(1):4-6.

11.
12.

Transformation of human mesenchymal stem cells increases their dependency on oxidative phosphorylation for energy production.

Funes JM, Quintero M, Henderson S, Martinez D, Qureshi U, Westwood C, Clements MO, Bourboulia D, Pedley RB, Moncada S, Boshoff C.

Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6223-8. Epub 2007 Mar 23.

13.

Adenylate kinase I does not affect cellular growth characteristics under normal and metabolic stress conditions.

de Bruin W, Oerlemans F, Wieringa B.

Exp Cell Res. 2004 Jul 1;297(1):97-107.

PMID:
15194428
14.

Oxidative metabolism in cancer growth.

Ristow M.

Curr Opin Clin Nutr Metab Care. 2006 Jul;9(4):339-45. Review.

PMID:
16778561
15.
16.

Energy metabolism transition in multi-cellular human tumor spheroids.

Rodríguez-Enríquez S, Gallardo-Pérez JC, Avilés-Salas A, Marín-Hernández A, Carreño-Fuentes L, Maldonado-Lagunas V, Moreno-Sánchez R.

J Cell Physiol. 2008 Jul;216(1):189-97. doi: 10.1002/jcp.21392.

PMID:
18264981
18.

On/off switching of capillary vessel flow controls mitochondrial and glycolysis pathways for energy production.

Abo T, Watanabe M, Tomiyama C, Kanda Y.

Med Hypotheses. 2014 Jul;83(1):99-100. doi: 10.1016/j.mehy.2014.03.035. Epub 2014 Apr 8.

PMID:
24767936
19.

Glycolysis in contracting rat skeletal muscle is controlled by factors related to energy state.

Ortenblad N, Macdonald WA, Sahlin K.

Biochem J. 2009 May 13;420(2):161-8. doi: 10.1042/BJ20082135.

PMID:
19250062
20.

Aerobic glycolysis: meeting the metabolic requirements of cell proliferation.

Lunt SY, Vander Heiden MG.

Annu Rev Cell Dev Biol. 2011;27:441-64. doi: 10.1146/annurev-cellbio-092910-154237. Review.

PMID:
21985671

Supplemental Content

Support Center