Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 214

1.

Genomic evaluation of Thermoanaerobacter spp. for the construction of designer co-cultures to improve lignocellulosic biofuel production.

Verbeke TJ, Zhang X, Henrissat B, Spicer V, Rydzak T, Krokhin OV, Fristensky B, Levin DB, Sparling R.

PLoS One. 2013;8(3):e59362. doi: 10.1371/journal.pone.0059362. Epub 2013 Mar 26.

2.

Thermoanaerobacter thermohydrosulfuricus WC1 shows protein complement stability during fermentation of key lignocellulose-derived substrates.

Verbeke TJ, Spicer V, Krokhin OV, Zhang X, Schellenberg JJ, Fristensky B, Wilkins JA, Levin DB, Sparling R.

Appl Environ Microbiol. 2014 Mar;80(5):1602-15. doi: 10.1128/AEM.03555-13. Epub 2013 Dec 20.

3.

Correlation of genomic and physiological traits of thermoanaerobacter species with biofuel yields.

Hemme CL, Fields MW, He Q, Deng Y, Lin L, Tu Q, Mouttaki H, Zhou A, Feng X, Zuo Z, Ramsay BD, He Z, Wu L, Van Nostrand J, Xu J, Tang YJ, Wiegel J, Phelps TJ, Zhou J.

Appl Environ Microbiol. 2011 Nov;77(22):7998-8008. doi: 10.1128/AEM.05677-11. Epub 2011 Sep 23.

4.

Production of ethanol from sugars and lignocellulosic biomass by Thermoanaerobacter J1 isolated from a hot spring in Iceland.

Jessen JE, Orlygsson J.

J Biomed Biotechnol. 2012;2012:186982. doi: 10.1155/2012/186982. Epub 2012 Oct 14.

5.

Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria.

Svetlitchnyi VA, Kensch O, Falkenhan DA, Korseska SG, Lippert N, Prinz M, Sassi J, Schickor A, Curvers S.

Biotechnol Biofuels. 2013 Feb 28;6(1):31. doi: 10.1186/1754-6834-6-31.

6.
7.

Characterization of enriched aerotolerant cellulose-degrading communities for biofuels production using differing selection pressures and inoculum sources.

Wushke S, Levin DB, Cicek N, Sparling R.

Can J Microbiol. 2013 Oct;59(10):679-83. doi: 10.1139/cjm-2013-0430. Epub 2013 Aug 29.

PMID:
24102221
8.

Evaluation of Paecilomyces variotii potential in bioethanol production from lignocellulose through consolidated bioprocessing.

Zerva A, Savvides AL, Katsifas EA, Karagouni AD, Hatzinikolaou DG.

Bioresour Technol. 2014 Jun;162:294-9. doi: 10.1016/j.biortech.2014.03.137. Epub 2014 Apr 3.

PMID:
24759646
9.

Mechanisms of enhanced cellulosic bioethanol fermentation by co-cultivation of Clostridium and Thermoanaerobacter spp.

He Q, Hemme CL, Jiang H, He Z, Zhou J.

Bioresour Technol. 2011 Oct;102(20):9586-92. doi: 10.1016/j.biortech.2011.07.098. Epub 2011 Aug 4.

PMID:
21868218
10.

Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated bioprocessing.

Yamada R, Hasunuma T, Kondo A.

Biotechnol Adv. 2013 Nov;31(6):754-63. doi: 10.1016/j.biotechadv.2013.02.007. Epub 2013 Mar 6. Review.

PMID:
23473971
11.

Biodelignification of lignocellulose substrates: An intrinsic and sustainable pretreatment strategy for clean energy production.

Chandel AK, Gonçalves BC, Strap JL, da Silva SS.

Crit Rev Biotechnol. 2015;35(3):281-93. doi: 10.3109/07388551.2013.841638. Review.

PMID:
24156399
12.

Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform.

Wei N, Oh EJ, Million G, Cate JH, Jin YS.

ACS Synth Biol. 2015 Jun 19;4(6):707-13. doi: 10.1021/sb500364q. Epub 2015 Jan 27.

PMID:
25587748
13.

Cellulolytic enzyme production and enzymatic hydrolysis for second-generation bioethanol production.

Wang M, Li Z, Fang X, Wang L, Qu Y.

Adv Biochem Eng Biotechnol. 2012;128:1-24. doi: 10.1007/10_2011_131. Review.

PMID:
22231654
14.

Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives.

Kumar R, Singh S, Singh OV.

J Ind Microbiol Biotechnol. 2008 May;35(5):377-391. doi: 10.1007/s10295-008-0327-8. Epub 2008 Mar 13. Review.

PMID:
18338189
15.

A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology.

Hasunuma T, Okazaki F, Okai N, Hara KY, Ishii J, Kondo A.

Bioresour Technol. 2013 May;135:513-22. doi: 10.1016/j.biortech.2012.10.047. Epub 2012 Oct 23. Review.

PMID:
23195654
16.

Hydrolysis of lignocellulosic materials for ethanol production: a review.

Sun Y, Cheng J.

Bioresour Technol. 2002 May;83(1):1-11. Review.

PMID:
12058826
17.

Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review.

Zhang K, Pei Z, Wang D.

Bioresour Technol. 2016 Jan;199:21-33. doi: 10.1016/j.biortech.2015.08.102. Epub 2015 Sep 1. Review.

PMID:
26343573
18.

Linking genome content to biofuel production yields: a meta-analysis of major catabolic pathways among select H2 and ethanol-producing bacteria.

Carere CR, Rydzak T, Verbeke TJ, Cicek N, Levin DB, Sparling R.

BMC Microbiol. 2012 Dec 18;12:295. doi: 10.1186/1471-2180-12-295.

19.

Ethanol production from lignocellulosic biomass by recombinant Escherichia coli strain FBR5.

Saha B, Cotta MA.

Bioengineered. 2012 Jul-Aug;3(4):197-202. doi: 10.4161/bioe.19874. Epub 2012 Jun 18. Review.

20.

Lignocellulosic ethanol: Technology design and its impact on process efficiency.

Paulova L, Patakova P, Branska B, Rychtera M, Melzoch K.

Biotechnol Adv. 2015 Nov 1;33(6 Pt 2):1091-107. doi: 10.1016/j.biotechadv.2014.12.002. Epub 2014 Dec 6. Review.

PMID:
25485865

Supplemental Content

Support Center