Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 97


Light-induced translocation of RGS9-1 and Gβ5L in mouse rod photoreceptors.

Tian M, Zallocchi M, Wang W, Chen CK, Palczewski K, Delimont D, Cosgrove D, Peng YW.

PLoS One. 2013;8(3):e58832. doi: 10.1371/journal.pone.0058832. Epub 2013 Mar 28.


Kinetic mechanism of RGS9-1 potentiation by R9AP.

Baker SA, Martemyanov KA, Shavkunov AS, Arshavsky VY.

Biochemistry. 2006 Sep 5;45(35):10690-7.


Membrane attachment is key to protecting transducin GTPase-activating complex from intracellular proteolysis in photoreceptors.

Gospe SM 3rd, Baker SA, Kessler C, Brucato MF, Winter JR, Burns ME, Arshavsky VY.

J Neurosci. 2011 Oct 12;31(41):14660-8. doi: 10.1523/JNEUROSCI.3516-11.2011.


Absence of the RGS9.Gbeta5 GTPase-activating complex in photoreceptors of the R9AP knockout mouse.

Keresztes G, Martemyanov KA, Krispel CM, Mutai H, Yoo PJ, Maison SF, Burns ME, Arshavsky VY, Heller S.

J Biol Chem. 2004 Jan 16;279(3):1581-4. Epub 2003 Nov 18.


Transducin activation state controls its light-dependent translocation in rod photoreceptors.

Kerov V, Chen D, Moussaif M, Chen YJ, Chen CK, Artemyev NO.

J Biol Chem. 2005 Dec 9;280(49):41069-76. Epub 2005 Oct 4.


Phosphorylation of phosducin accelerates rod recovery from transducin translocation.

Belcastro M, Song H, Sinha S, Song C, Mathers PH, Sokolov M.

Invest Ophthalmol Vis Sci. 2012 May 1;53(6):3084-91. doi: 10.1167/iovs.11-8798.


Specific binding of RGS9-Gbeta 5L to protein anchor in photoreceptor membranes greatly enhances its catalytic activity.

Lishko PV, Martemyanov KA, Hopp JA, Arshavsky VY.

J Biol Chem. 2002 Jul 5;277(27):24376-81. Epub 2002 May 2.


Prolonged photoresponses and defective adaptation in rods of Gbeta5-/- mice.

Krispel CM, Chen CK, Simon MI, Burns ME.

J Neurosci. 2003 Aug 6;23(18):6965-71.


Membrane anchoring subunits specify selective regulation of RGS9·Gbeta5 GAP complex in photoreceptor neurons.

Cao Y, Kolesnikov AV, Masuho I, Kefalov VJ, Martemyanov KA.

J Neurosci. 2010 Oct 13;30(41):13784-93. doi: 10.1523/JNEUROSCI.1191-10.2010.


Light-dependent compartmentalization of transducin in rod photoreceptors.

Artemyev NO.

Mol Neurobiol. 2008 Feb;37(1):44-51. doi: 10.1007/s12035-008-8015-2. Epub 2008 Apr 19. Review.


Identification of protein kinase C isozymes responsible for the phosphorylation of photoreceptor-specific RGS9-1 at Ser475.

Sokal I, Hu G, Liang Y, Mao M, Wensel TG, Palczewski K.

J Biol Chem. 2003 Mar 7;278(10):8316-25. Epub 2002 Dec 23.


The translocation of signaling molecules in dark adapting mammalian rod photoreceptor cells is dependent on the cytoskeleton.

Reidel B, Goldmann T, Giessl A, Wolfrum U.

Cell Motil Cytoskeleton. 2008 Oct;65(10):785-800. doi: 10.1002/cm.20300.


Massive light-driven translocation of transducin between the two major compartments of rod cells: a novel mechanism of light adaptation.

Sokolov M, Lyubarsky AL, Strissel KJ, Savchenko AB, Govardovskii VI, Pugh EN Jr, Arshavsky VY.

Neuron. 2002 Mar 28;34(1):95-106.


RGS9 knockout causes a short delay in light responses of ON-bipolar cells.

Herrmann R, Lee B, Arshavsky VY.

PLoS One. 2011;6(11):e27573. doi: 10.1371/journal.pone.0027573. Epub 2011 Nov 11.


Phosducin facilitates light-driven transducin translocation in rod photoreceptors. Evidence from the phosducin knockout mouse.

Sokolov M, Strissel KJ, Leskov IB, Michaud NA, Govardovskii VI, Arshavsky VY.

J Biol Chem. 2004 Apr 30;279(18):19149-56. Epub 2004 Feb 18.


Photoreceptor pathology in the X-linked retinoschisis (XLRS) mouse results in delayed rod maturation and impaired light driven transducin translocation.

Ziccardi L, Vijayasarathy C, Bush RA, Sieving PA.

Adv Exp Med Biol. 2014;801:559-66. doi: 10.1007/978-1-4614-3209-8_71.

Supplemental Content

Support Center