Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 121

1.

Novel monosaccharide fermentation products in Caldicellulosiruptor saccharolyticus identified using NMR spectroscopy.

Isern NG, Xue J, Rao JV, Cort JR, Ahring BK.

Biotechnol Biofuels. 2013 Apr 3;6(1):47. doi: 10.1186/1754-6834-6-47.

2.

Carbohydrate utilization patterns for the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus reveal broad growth substrate preferences.

Vanfossen AL, Verhaart MR, Kengen SM, Kelly RM.

Appl Environ Microbiol. 2009 Dec;75(24):7718-24. doi: 10.1128/AEM.01959-09. Epub 2009 Oct 9.

3.

New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoacetica metabolic profiles.

Xue J, Isern NG, Ewing RJ, Liyu AV, Sears JA, Knapp H, Iversen J, Sisk DR, Ahring BK, Majors PD.

Appl Microbiol Biotechnol. 2014 Oct;98(19):8367-75. doi: 10.1007/s00253-014-5847-8. Epub 2014 Jun 20.

PMID:
24946863
4.

Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering.

Bera AK, Sedlak M, Khan A, Ho NW.

Appl Microbiol Biotechnol. 2010 Aug;87(5):1803-11. doi: 10.1007/s00253-010-2609-0. Epub 2010 May 7.

PMID:
20449743
5.

Hydrogenomics of the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus.

van de Werken HJ, Verhaart MR, VanFossen AL, Willquist K, Lewis DL, Nichols JD, Goorissen HP, Mongodin EF, Nelson KE, van Niel EW, Stams AJ, Ward DE, de Vos WM, van der Oost J, Kelly RM, Kengen SW.

Appl Environ Microbiol. 2008 Nov;74(21):6720-9. doi: 10.1128/AEM.00968-08. Epub 2008 Sep 5.

6.

Thermophilic fermentation of acetoin and 2,3-butanediol by a novel Geobacillus strain.

Xiao Z, Wang X, Huang Y, Huo F, Zhu X, Xi L, Lu JR.

Biotechnol Biofuels. 2012 Dec 6;5(1):88. doi: 10.1186/1754-6834-5-88.

7.

Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose.

Lawford HG, Rousseau JD.

Appl Biochem Biotechnol. 2002 Spring;98-100:429-48.

PMID:
12018270
8.

Exploitation of the extremely thermophilic Caldicellulosiruptor saccharolyticus in hydrogen and biogas production from biomasses.

Herbel Z, Rákhely G, Bagi Z, Ivanova G, Acs N, Kovács E, Kovács KL.

Environ Technol. 2010 Jul-Aug;31(8-9):1017-24. doi: 10.1080/09593330.2010.484075.

PMID:
20662389
9.

Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria.

Svetlitchnyi VA, Kensch O, Falkenhan DA, Korseska SG, Lippert N, Prinz M, Sassi J, Schickor A, Curvers S.

Biotechnol Biofuels. 2013 Feb 28;6(1):31. doi: 10.1186/1754-6834-6-31.

10.

Anaerobic fermentation of glycerol in Paenibacillus macerans: metabolic pathways and environmental determinants.

Gupta A, Murarka A, Campbell P, Gonzalez R.

Appl Environ Microbiol. 2009 Sep;75(18):5871-83. doi: 10.1128/AEM.01246-09. Epub 2009 Jul 17.

11.

Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana.

de Vrije T, Bakker RR, Budde MA, Lai MH, Mars AE, Claassen PA.

Biotechnol Biofuels. 2009 Jun 17;2(1):12. doi: 10.1186/1754-6834-2-12.

12.

Caloramator boliviensis sp. nov., a thermophilic, ethanol-producing bacterium isolated from a hot spring.

Crespo C, Pozzo T, Karlsson EN, Alvarez MT, Mattiasson B.

Int J Syst Evol Microbiol. 2012 Jul;62(Pt 7):1679-86. doi: 10.1099/ijs.0.032664-0. Epub 2011 Sep 9.

PMID:
21908677
13.

Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe "Anaerocellum thermophilum" DSM 6725.

Yang SJ, Kataeva I, Hamilton-Brehm SD, Engle NL, Tschaplinski TJ, Doeppke C, Davis M, Westpheling J, Adams MW.

Appl Environ Microbiol. 2009 Jul;75(14):4762-9. doi: 10.1128/AEM.00236-09. Epub 2009 May 22.

14.

Yields from glucose, xylose, and paper sludge hydrolysate during hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus.

Kádár Z, de Vrije T, van Noorden GE, Budde MA, Szengyel Z, Réczey K, Claassen PA.

Appl Biochem Biotechnol. 2004 Spring;113-116:497-508.

PMID:
15054273
15.
16.

Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives.

Bielen AA, Verhaart MR, van der Oost J, Kengen SW.

Life (Basel). 2013 Jan 17;3(1):52-85. doi: 10.3390/life3010052. Review.

17.

Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains.

Bettiga M, Hahn-Hägerdal B, Gorwa-Grauslund MF.

Biotechnol Biofuels. 2008 Oct 23;1(1):16. doi: 10.1186/1754-6834-1-16.

18.

Production of Acetoin through Simultaneous Utilization of Glucose, Xylose, and Arabinose by Engineered Bacillus subtilis.

Zhang B, Li XL, Fu J, Li N, Wang Z, Tang YJ, Chen T.

PLoS One. 2016 Jul 28;11(7):e0159298. doi: 10.1371/journal.pone.0159298. eCollection 2016.

19.

Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains.

Wisselink HW, Toirkens MJ, Wu Q, Pronk JT, van Maris AJ.

Appl Environ Microbiol. 2009 Feb;75(4):907-14. doi: 10.1128/AEM.02268-08. Epub 2008 Dec 12.

20.

Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus.

de Vrije T, Mars AE, Budde MA, Lai MH, Dijkema C, de Waard P, Claassen PA.

Appl Microbiol Biotechnol. 2007 Apr;74(6):1358-67. Epub 2007 Jan 11.

PMID:
17216445
Items per page

Supplemental Content

Write to the Help Desk