Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 81

1.

Genetic variation in HIF signaling underlies quantitative variation in physiological and life-history traits within lowland butterfly populations.

Marden JH, Fescemyer HW, Schilder RJ, Doerfler WR, Vera JC, Wheat CW.

Evolution. 2013 Apr;67(4):1105-15. doi: 10.1111/evo.12004. Epub 2012 Dec 11.

PMID:
23550759
2.

Enzyme polymorphism, oxygen and injury: a lipidomic analysis of flight-induced oxidative damage in a SDH-polymorphic insect.

Pekny JE, Smith PB, Marden JH.

J Exp Biol. 2018 Feb 14. pii: jeb.171009. doi: 10.1242/jeb.171009. [Epub ahead of print]

PMID:
29444838
3.

Functional genomics of life history variation in a butterfly metapopulation.

Wheat CW, Fescemyer HW, Kvist J, Tas E, Vera JC, Frilander MJ, Hanski I, Marden JH.

Mol Ecol. 2011 May;20(9):1813-28. doi: 10.1111/j.1365-294X.2011.05062.x. Epub 2011 Mar 17.

PMID:
21410806
4.

Effects of ambient and preceding temperatures and metabolic genes on flight metabolism in the Glanville fritillary butterfly.

Wong SC, Oksanen A, Mattila AL, Lehtonen R, Niitepõld K, Hanski I.

J Insect Physiol. 2016 Feb;85:23-31. doi: 10.1016/j.jinsphys.2015.11.015. Epub 2015 Dec 3.

5.

Transcriptome analysis reveals signature of adaptation to landscape fragmentation.

Somervuo P, Kvist J, Ikonen S, Auvinen P, Paulin L, Koskinen P, Holm L, Taipale M, Duplouy A, Ruokolainen A, Saarnio S, Sirén J, Kohonen J, Corander J, Frilander MJ, Ahola V, Hanski I.

PLoS One. 2014 Jul 2;9(7):e101467. doi: 10.1371/journal.pone.0101467. eCollection 2014. Erratum in: PLoS One. 2014;9(7):e104668.

6.

Fitness differences associated with Pgi SNP genotypes in the Glanville fritillary butterfly (Melitaea cinxia).

Orsini L, Wheat CW, Haag CR, Kvist J, Frilander MJ, Hanski I.

J Evol Biol. 2009 Feb;22(2):367-75. doi: 10.1111/j.1420-9101.2008.01653.x. Epub 2008 Nov 15.

7.

Molecular-level variation affects population growth in a butterfly metapopulation.

Hanski I, Saccheri I.

PLoS Biol. 2006 May;4(5):e129. Epub 2006 Apr 25.

8.

Cytochrome P450 gene CYP337 and heritability of fitness traits in the Glanville fritillary butterfly.

de Jong MA, Wong SC, Lehtonen R, Hanski I.

Mol Ecol. 2014 Apr;23(8):1994-2005. doi: 10.1111/mec.12697. Epub 2014 Apr 5.

PMID:
24552294
9.

Oxygen and energy availability interact to determine flight performance in the Glanville fritillary butterfly.

Fountain T, Melvin RG, Ikonen S, Ruokolainen A, Woestmann L, Hietakangas V, Hanski I.

J Exp Biol. 2016 May 15;219(Pt 10):1488-94. doi: 10.1242/jeb.138180. Epub 2016 Mar 4.

10.

Genotype by temperature interactions in the metabolic rate of the Glanville fritillary butterfly.

Niitepõld K.

J Exp Biol. 2010 Apr;213(Pt 7):1042-8. doi: 10.1242/jeb.034132.

11.

Plastic larval development in a butterfly has complex environmental and genetic causes and consequences for population dynamics.

Saastamoinen M, Ikonen S, Wong SC, Lehtonen R, Hanski I.

J Anim Ecol. 2013 May;82(3):529-39. doi: 10.1111/1365-2656.12034. Epub 2013 Jan 24.

PMID:
23347450
12.

Flight-induced changes in gene expression in the Glanville fritillary butterfly.

Kvist J, Mattila AL, Somervuo P, Ahola V, Koskinen P, Paulin L, Salmela L, Fountain T, Rastas P, Ruokolainen A, Taipale M, Holm L, Auvinen P, Lehtonen R, Frilander MJ, Hanski I.

Mol Ecol. 2015 Oct;24(19):4886-900. doi: 10.1111/mec.13359.

PMID:
26331775
13.

Diversities in hepatic HIF-1, IGF-I/IGFBP-1, LDH/ICD, and their mRNA expressions induced by CoCl(2) in Qinghai-Tibetan plateau mammals and sea level mice.

Chen XQ, Wang SJ, Du JZ, Chen XC.

Am J Physiol Regul Integr Comp Physiol. 2007 Jan;292(1):R516-26. Epub 2006 Sep 21.

PMID:
16990490
14.

Dispersal-related life-history trade-offs in a butterfly metapopulation.

Hanski I, Saastamoinen M, Ovaskainen O.

J Anim Ecol. 2006 Jan;75(1):91-100.

PMID:
16903046
15.

A candidate locus for variation in dispersal rate in a butterfly metapopulation.

Haag CR, Saastamoinen M, Marden JH, Hanski I.

Proc Biol Sci. 2005 Dec 7;272(1580):2449-56.

16.

Genotypic and environmental effects on flight activity and oviposition in the Glanville fritillary butterfly.

Saastamoinen M, Hanski I.

Am Nat. 2008 Jun;171(6):701-12. doi: 10.1086/587531.

PMID:
18419339
17.

Flight metabolic rate and Pgi genotype influence butterfly dispersal rate in the field.

Niitepõld K, Smith AD, Osborne JL, Reynolds DR, Carreck NL, Martin AP, Marden JH, Ovaskainen O, Hanski I.

Ecology. 2009 Aug;90(8):2223-32.

PMID:
19739384
18.

Heat shock protein 70 gene family in the Glanville fritillary butterfly and their response to thermal stress.

Luo S, Ahola V, Shu C, Xu C, Wang R.

Gene. 2015 Feb 10;556(2):132-41. doi: 10.1016/j.gene.2014.11.043. Epub 2014 Nov 27.

PMID:
25433328
19.

Differences in the aerobic capacity of flight muscles between butterfly populations and species with dissimilar flight abilities.

Rauhamäki V, Wolfram J, Jokitalo E, Hanski I, Dahlhoff EP.

PLoS One. 2014 Jan 8;9(1):e78069. doi: 10.1371/journal.pone.0078069. eCollection 2014.

20.

Genetic variation in hypoxia-inducible factor 1alpha and its possible association with high altitude adaptation in Sherpas.

Suzuki K, Kizaki T, Hitomi Y, Nukita M, Kimoto K, Miyazawa N, Kobayashi K, Ohnuki Y, Ohno H.

Med Hypotheses. 2003 Sep;61(3):385-9.

PMID:
12944107

Supplemental Content

Support Center