Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 157

1.

Effect of hexavalent chromium on electron leakage of respiratory chain in mitochondria isolated from rat liver.

Xie Y, Zhong C, Zeng M, Guan L, Luo L.

Cell Physiol Biochem. 2013;31(2-3):473-85. doi: 10.1159/000350062. Epub 2013 Mar 20.

2.

Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study.

Fernandes MA, Santos MS, Alpoim MC, Madeira VM, Vicente JA.

J Biochem Mol Toxicol. 2002;16(2):53-63.

PMID:
11979422
3.

Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I.

Plecitá-Hlavatá L, Jezek J, Jezek P.

Int J Biochem Cell Biol. 2009 Aug-Sep;41(8-9):1697-707. doi: 10.1016/j.biocel.2009.02.015. Epub 2009 Mar 3.

PMID:
19433311
4.

Production of reactive oxygen species by mitochondria: central role of complex III.

Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ.

J Biol Chem. 2003 Sep 19;278(38):36027-31. Epub 2003 Jul 2.

5.

Role of mitochondrial electron transport chain dysfunction in Cr(VI)-induced cytotoxicity in L-02 hepatocytes.

Xiao F, Li Y, Luo L, Xie Y, Zeng M, Wang A, Chen H, Zhong C.

Cell Physiol Biochem. 2014;33(4):1013-25. doi: 10.1159/000358672. Epub 2014 Apr 4.

6.

Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates.

Siebels I, Dröse S.

Biochim Biophys Acta. 2013 Oct;1827(10):1156-64. doi: 10.1016/j.bbabio.2013.06.005. Epub 2013 Jun 22.

7.

Hexavalent chromium targets mitochondrial respiratory chain complex I to induce reactive oxygen species-dependent caspase-3 activation in L-02 hepatocytes.

Xiao F, Li Y, Dai L, Deng Y, Zou Y, Li P, Yang Y, Zhong C.

Int J Mol Med. 2012 Sep;30(3):629-35. doi: 10.3892/ijmm.2012.1031. Epub 2012 Jun 14.

PMID:
22710416
8.

Reactive oxygen species are generated by the respiratory complex II--evidence for lack of contribution of the reverse electron flow in complex I.

Moreno-Sánchez R, Hernández-Esquivel L, Rivero-Segura NA, Marín-Hernández A, Neuzil J, Ralph SJ, Rodríguez-Enríquez S.

FEBS J. 2013 Feb;280(3):927-38. doi: 10.1111/febs.12086. Epub 2013 Jan 7.

9.
10.

Studies on Hg(II)-induced H2O2 formation and oxidative stress in vivo and in vitro in rat kidney mitochondria.

Lund BO, Miller DM, Woods JS.

Biochem Pharmacol. 1993 May 25;45(10):2017-24.

PMID:
8512585
11.
12.

Characterization of the stimulus for reactive oxygen species generation in calcium-overloaded mitochondria.

Rodrigues FP, Pestana CR, Dos Santos GA, Pardo-Andreu GL, Santos AC, Uyemura SA, Alberici LC, Curti C.

Redox Rep. 2011;16(3):108-13. doi: 10.1179/1351000211Y.0000000001.

PMID:
21801492
13.
14.
15.

Isoflurane differentially modulates mitochondrial reactive oxygen species production via forward versus reverse electron transport flow: implications for preconditioning.

Hirata N, Shim YH, Pravdic D, Lohr NL, Pratt PF Jr, Weihrauch D, Kersten JR, Warltier DC, Bosnjak ZJ, Bienengraeber M.

Anesthesiology. 2011 Sep;115(3):531-40. doi: 10.1097/ALN.0b013e31822a2316.

16.

Generation of reactive oxygen species by the mitochondrial electron transport chain.

Liu Y, Fiskum G, Schubert D.

J Neurochem. 2002 Mar;80(5):780-7.

17.

Reduction of hexavalent chromium by mitochondria: methodological implications and possible mechanisms.

Arillo A, Melodia F, Frache R.

Ecotoxicol Environ Saf. 1987 Oct;14(2):164-77.

PMID:
3691371
18.
19.
20.

Supplemental Content

Support Center