Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 121

1.

Two-particle anomalous diffusion: probability density functions and self-similar stochastic processes.

Pagnini G, Mura A, Mainardi F.

Philos Trans A Math Phys Eng Sci. 2013 Apr 1;371(1990):20120154. doi: 10.1098/rsta.2012.0154. Print 2013 May 13.

2.

Levy diffusion in a force field, huber relaxation kinetics, and nonequilibrium thermodynamics: H theorem for enhanced diffusion with Levy white noise

Vlad MO, Ross J, Schneider FW.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Aug;62(2 Pt A):1743-63.

PMID:
11088636
3.

Anomalous diffusion in stochastic systems with nonhomogeneously distributed traps.

Srokowski T.

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 May;91(5):052141. Epub 2015 May 26.

PMID:
26066153
4.

Anomalous diffusion as modeled by a nonstationary extension of Brownian motion.

Cushman JH, O'Malley D, Park M.

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Mar;79(3 Pt 1):032101. Epub 2009 Mar 27.

PMID:
19391995
5.
6.

Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking.

Burov S, Jeon JH, Metzler R, Barkai E.

Phys Chem Chem Phys. 2011 Feb 7;13(5):1800-12. doi: 10.1039/c0cp01879a. Epub 2011 Jan 4.

PMID:
21203639
7.

Rectified brownian transport in corrugated channels: Fractional brownian motion and Lévy flights.

Ai BQ, Shao ZG, Zhong WR.

J Chem Phys. 2012 Nov 7;137(17):174101. doi: 10.1063/1.4764472.

PMID:
23145711
8.

From diffusion to anomalous diffusion: a century after Einstein's Brownian motion.

Sokolov IM, Klafter J.

Chaos. 2005 Jun;15(2):26103.

PMID:
16035905
9.

Fractional Brownian motion with a reflecting wall.

Wada AHO, Vojta T.

Phys Rev E. 2018 Feb;97(2-1):020102. doi: 10.1103/PhysRevE.97.020102.

PMID:
29548098
10.

Brownian motion of a self-propelled particle.

ten Hagen B, van Teeffelen S, Löwen H.

J Phys Condens Matter. 2011 May 18;23(19):194119. doi: 10.1088/0953-8984/23/19/194119. Epub 2011 Apr 27.

PMID:
21525563
11.

Self-similar Gaussian processes for modeling anomalous diffusion.

Lim SC, Muniandy SV.

Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Aug;66(2 Pt 1):021114. Epub 2002 Aug 29.

PMID:
12241157
12.

Anomalous diffusion and multifractional Brownian motion: simulating molecular crowding and physical obstacles in systems biology.

Marquez-Lago TT, Leier A, Burrage K.

IET Syst Biol. 2012 Aug;6(4):134-42. doi: 10.1049/iet-syb.2011.0049.

PMID:
23039694
13.

Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking.

Metzler R, Jeon JH, Cherstvy AG, Barkai E.

Phys Chem Chem Phys. 2014 Nov 28;16(44):24128-64. doi: 10.1039/c4cp03465a.

PMID:
25297814
14.

Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion.

Jeon JH, Chechkin AV, Metzler R.

Phys Chem Chem Phys. 2014 Aug 14;16(30):15811-7. doi: 10.1039/c4cp02019g.

PMID:
24968336
15.

Toward the characterization of fractional stochastic processes underlying methyl dynamics in proteins.

Calligari P, Abergel D.

J Phys Chem B. 2012 Nov 1;116(43):12955-65. doi: 10.1021/jp307050v. Epub 2012 Oct 18.

PMID:
23009081
16.

Communication: A full solution of the annihilation reaction A + B → [empty-set] based on time-subordination.

Benson DA, Bolster D, Paster A.

J Chem Phys. 2013 Apr 7;138(13):131101. doi: 10.1063/1.4800799.

PMID:
23574201
17.

First passage times for a tracer particle in single file diffusion and fractional Brownian motion.

Sanders LP, Ambjörnsson T.

J Chem Phys. 2012 May 7;136(17):175103. doi: 10.1063/1.4707349.

PMID:
22583268
18.

Operator Lévy motion and multiscaling anomalous diffusion.

Meerschaert MM, Benson DA, Baeumer B.

Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Feb;63(2 Pt 1):021112. Epub 2001 Jan 25.

PMID:
11308473
19.

Fractional calculus in hydrologic modeling: A numerical perspective.

Benson DA, Meerschaert MM, Revielle J.

Adv Water Resour. 2013 Jan 1;51:479-497. Epub 2012 May 4.

20.

Stochastic Loewner evolution relates anomalous diffusion and anisotropic percolation.

Credidio HF, Moreira AA, Herrmann HJ, Andrade JS.

Phys Rev E. 2016 Apr;93:042124. doi: 10.1103/PhysRevE.93.042124. Epub 2016 Apr 21.

PMID:
27176271

Supplemental Content

Support Center