Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 139

1.

In situ precipitation of Te nanoparticles in p-type BiSbTe and the effect on thermoelectric performance.

Zhang T, Jiang J, Xiao Y, Zhai Y, Yang S, Xu G.

ACS Appl Mater Interfaces. 2013 Apr 24;5(8):3071-4. doi: 10.1021/am303145v. Epub 2013 Apr 12.

PMID:
23544791
2.

High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys.

Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus MS, Chen G, Ren Z.

Science. 2008 May 2;320(5876):634-8. doi: 10.1126/science.1156446. Epub 2008 Mar 20.

3.

Surfactant-free synthesis of Bi2Te3-Te micro-nano heterostructure with enhanced thermoelectric figure of merit.

Zhang Y, Wang H, Kräemer S, Shi Y, Zhang F, Snedaker M, Ding K, Moskovits M, Snyder GJ, Stucky GD.

ACS Nano. 2011 Apr 26;5(4):3158-65. doi: 10.1021/nn2002294. Epub 2011 Mar 21.

PMID:
21417452
4.

Concerted Rattling in CsAg5 Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance.

Lin H, Tan G, Shen JN, Hao S, Wu LM, Calta N, Malliakas C, Wang S, Uher C, Wolverton C, Kanatzidis MG.

Angew Chem Int Ed Engl. 2016 Sep 12;55(38):11431-6. doi: 10.1002/anie.201605015. Epub 2016 Aug 11.

PMID:
27513458
5.

Enhanced Thermoelectric Properties in the Counter-Doped SnTe System with Strained Endotaxial SrTe.

Zhao LD, Zhang X, Wu H, Tan G, Pei Y, Xiao Y, Chang C, Wu D, Chi H, Zheng L, Gong S, Uher C, He J, Kanatzidis MG.

J Am Chem Soc. 2016 Feb 24;138(7):2366-73. doi: 10.1021/jacs.5b13276. Epub 2016 Feb 12.

PMID:
26871965
6.

Heavy doping and band engineering by potassium to improve the thermoelectric figure of merit in p-type PbTe, PbSe, and PbTe(1-y)Se(y).

Zhang Q, Cao F, Liu W, Lukas K, Yu B, Chen S, Opeil C, Broido D, Chen G, Ren Z.

J Am Chem Soc. 2012 Jun 20;134(24):10031-8. doi: 10.1021/ja301245b. Epub 2012 Jun 7.

PMID:
22676702
7.

Enhanced thermoelectric performance in CdO by nano-SiO₂ inclusions.

Li L, Liang S, Li S, Wang J, Wang S, Dong G, Fu G.

Nanotechnology. 2014 Oct 24;25(42):425402. doi: 10.1088/0957-4484/25/42/425402. Epub 2014 Oct 2.

PMID:
25274431
8.

On the origin of increased phonon scattering in nanostructured PbTe based thermoelectric materials.

He J, Sootsman JR, Girard SN, Zheng JC, Wen J, Zhu Y, Kanatzidis MG, Dravid VP.

J Am Chem Soc. 2010 Jun 30;132(25):8669-75. doi: 10.1021/ja1010948.

PMID:
20524606
9.

One-step chemical synthesis of ZnO/graphene oxide molecular hybrids for high-temperature thermoelectric applications.

Chen D, Zhao Y, Chen Y, Wang B, Chen H, Zhou J, Liang Z.

ACS Appl Mater Interfaces. 2015 Feb 11;7(5):3224-30. doi: 10.1021/am507882f. Epub 2015 Jan 30.

PMID:
25607423
10.

High temperature thermoelectric properties of Mo3Sb(7-x)Te(x) (0.0≤x≤1.8).

Candolfi C, Lenoir B, Chubilleau C, Dauscher A, Guilmeau E.

J Phys Condens Matter. 2010 Jan 20;22(2):025801. doi: 10.1088/0953-8984/22/2/025801. Epub 2009 Dec 14.

PMID:
21386262
11.

Foldable Thermoelectric Materials: Improvement of the Thermoelectric Performance of Directly Spun CNT Webs by Individual Control of Electrical and Thermal Conductivity.

An CJ, Kang YH, Lee AY, Jang KS, Jeong Y, Cho SY.

ACS Appl Mater Interfaces. 2016 Aug 31;8(34):22142-50. doi: 10.1021/acsami.6b04485. Epub 2016 Aug 18.

PMID:
27501827
12.

Nanostructures versus solid solutions: low lattice thermal conductivity and enhanced thermoelectric figure of merit in Pb9.6Sb0.2Te10-xSex bulk materials.

Poudeu PF, D'Angelo J, Kong H, Downey A, Short JL, Pcionek R, Hogan TP, Uher C, Kanatzidis MG.

J Am Chem Soc. 2006 Nov 8;128(44):14347-55.

PMID:
17076508
13.

Effect of silicon and sodium on thermoelectric properties of thallium-doped lead telluride-based materials.

Zhang Q, Wang H, Zhang Q, Liu W, Yu B, Wang H, Wang D, Ni G, Chen G, Ren Z.

Nano Lett. 2012 May 9;12(5):2324-30. doi: 10.1021/nl3002183. Epub 2012 Apr 20.

PMID:
22493974
14.

Engineering Band Structure via the Site Preference of Pb(2+) in the In(+) Site for Enhanced Thermoelectric Performance of In6Se7.

Cui J, Cheng M, Wu W, Du Z, Chao Y.

ACS Appl Mater Interfaces. 2016 Sep 7;8(35):23175-80. doi: 10.1021/acsami.6b07238. Epub 2016 Aug 26.

PMID:
27541319
15.

Effects of doping on transport properties in Cu-Bi-Se-based thermoelectric materials.

Hwang JY, Mun HA, Kim SI, Lee KM, Kim J, Lee KH, Kim SW.

Inorg Chem. 2014 Dec 15;53(24):12732-8. doi: 10.1021/ic5014945. Epub 2014 Nov 17.

PMID:
25402498
16.

Thermoelectric performance of n-type (PbTe)0.75(PbS)0.15(PbSe)0.1 composites.

Yamini SA, Wang H, Ginting D, Mitchell DR, Dou SX, Snyder GJ.

ACS Appl Mater Interfaces. 2014 Jul 23;6(14):11476-83. doi: 10.1021/am502140h. Epub 2014 Jul 3.

PMID:
24960418
17.

Synergetic effect of Zn substitution on the electron and phonon transport in Mg2Si0.5Sn0.5-based thermoelectric materials.

Gao H, Zhu T, Zhao X, Deng Y.

Dalton Trans. 2014 Oct 7;43(37):14072-8. doi: 10.1039/c4dt01734j. Epub 2014 Aug 14.

PMID:
25118956
18.

Enhanced thermoelectric performance of rough silicon nanowires.

Hochbaum AI, Chen R, Delgado RD, Liang W, Garnett EC, Najarian M, Majumdar A, Yang P.

Nature. 2008 Jan 10;451(7175):163-7. doi: 10.1038/nature06381.

PMID:
18185582
19.

High thermoelectric properties of n-type AgBiSe2.

Pan L, Bérardan D, Dragoe N.

J Am Chem Soc. 2013 Apr 3;135(13):4914-7. doi: 10.1021/ja312474n. Epub 2013 Mar 22.

PMID:
23510459
20.

Thermal Transport Driven by Extraneous Nanoparticles and Phase Segregation in Nanostructured Mg2(Si,Sn) and Estimation of Optimum Thermoelectric Performance.

Tazebay AS, Yi SI, Lee JK, Kim H, Bahk JH, Kim SL, Park SD, Lee HS, Shakouri A, Yu C.

ACS Appl Mater Interfaces. 2016 Mar 23;8(11):7003-12. doi: 10.1021/acsami.5b12060. Epub 2016 Mar 8.

PMID:
26915474

Supplemental Content

Support Center