Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

Genes related to ion-transport and energy production are upregulated in response to CO2-driven pH decrease in corals: new insights from transcriptome analysis.

Vidal-Dupiol J, Zoccola D, Tambutté E, Grunau C, Cosseau C, Smith KM, Freitag M, Dheilly NM, Allemand D, Tambutté S.

PLoS One. 2013;8(3):e58652. doi: 10.1371/journal.pone.0058652. Epub 2013 Mar 27.

2.

Whole transcriptome analysis of the coral Acropora millepora reveals complex responses to CO₂-driven acidification during the initiation of calcification.

Moya A, Huisman L, Ball EE, Hayward DC, Grasso LC, Chua CM, Woo HN, Gattuso JP, Forêt S, Miller DJ.

Mol Ecol. 2012 May;21(10):2440-54. doi: 10.1111/j.1365-294X.2012.05554.x. Epub 2012 Apr 10.

PMID:
22490231
3.

Corals concentrate dissolved inorganic carbon to facilitate calcification.

Allison N, Cohen I, Finch AA, Erez J, Tudhope AW; Edinburgh Ion Microprobe Facility.

Nat Commun. 2014 Dec 22;5:5741. doi: 10.1038/ncomms6741.

PMID:
25531981
4.

Impact of seawater acidification on pH at the tissue-skeleton interface and calcification in reef corals.

Venn AA, Tambutté E, Holcomb M, Laurent J, Allemand D, Tambutté S.

Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1634-9. doi: 10.1073/pnas.1216153110. Epub 2012 Dec 31.

5.

Expression of calcification and metabolism-related genes in response to elevated pCO2 and temperature in the reef-building coral Acropora millepora.

Rocker MM, Noonan S, Humphrey C, Moya A, Willis BL, Bay LK.

Mar Genomics. 2015 Dec;24 Pt 3:313-8. doi: 10.1016/j.margen.2015.08.001. Epub 2015 Aug 12.

PMID:
26275825
6.

Coral energy reserves and calcification in a high-CO2 world at two temperatures.

Schoepf V, Grottoli AG, Warner ME, Cai WJ, Melman TF, Hoadley KD, Pettay DT, Hu X, Li Q, Xu H, Wang Y, Matsui Y, Baumann JH.

PLoS One. 2013 Oct 11;8(10):e75049. doi: 10.1371/journal.pone.0075049. eCollection 2013. Erratum in: PLoS One. 2014;9(9):e108082.

7.

Coral-zooxanthellae meta-transcriptomics reveals integrated response to pollutant stress.

Gust KA, Najar FZ, Habib T, Lotufo GR, Piggot AM, Fouke BW, Laird JG, Wilbanks MS, Rawat A, Indest KJ, Roe BA, Perkins EJ.

BMC Genomics. 2014 Jul 12;15:591. doi: 10.1186/1471-2164-15-591.

8.

Rapid acclimation of juvenile corals to CO2 -mediated acidification by upregulation of heat shock protein and Bcl-2 genes.

Moya A, Huisman L, Forêt S, Gattuso JP, Hayward DC, Ball EE, Miller DJ.

Mol Ecol. 2015 Jan;24(2):438-52. doi: 10.1111/mec.13021. Epub 2015 Jan 9.

PMID:
25444080
9.

Effects of elevated pCO2 and feeding on net calcification and energy budget of the Mediterranean cold-water coral Madrepora oculata.

Maier C, Popp P, Sollfrank N, Weinbauer MG, Wild C, Gattuso JP.

J Exp Biol. 2016 Oct 15;219(Pt 20):3208-3217. Epub 2016 Jul 28.

10.

Live tissue imaging shows reef corals elevate pH under their calcifying tissue relative to seawater.

Venn A, Tambutté E, Holcomb M, Allemand D, Tambutté S.

PLoS One. 2011;6(5):e20013. doi: 10.1371/journal.pone.0020013. Epub 2011 May 27.

11.

Transcriptomic Changes in Coral Holobionts Provide Insights into Physiological Challenges of Future Climate and Ocean Change.

Kaniewska P, Chan CK, Kline D, Ling EY, Rosic N, Edwards D, Hoegh-Guldberg O, Dove S.

PLoS One. 2015 Oct 28;10(10):e0139223. doi: 10.1371/journal.pone.0139223. eCollection 2015.

12.

Coral calcifying fluid pH dictates response to ocean acidification.

Holcomb M, Venn AA, Tambutté E, Tambutté S, Allemand D, Trotter J, McCulloch M.

Sci Rep. 2014 Jun 6;4:5207. doi: 10.1038/srep05207.

13.

Gene expression signatures of energetic acclimatisation in the reef building coral Acropora millepora.

Bay LK, Guérécheau A, Andreakis N, Ulstrup KE, Matz MV.

PLoS One. 2013 May 9;8(5):e61736. doi: 10.1371/journal.pone.0061736. Print 2013.

14.
15.

Responses of the metabolism of the larvae of Pocillopora damicornis to ocean acidification and warming.

Rivest EB, Hofmann GE.

PLoS One. 2014 Apr 25;9(4):e96172. doi: 10.1371/journal.pone.0096172. eCollection 2014.

16.

The effects of thermal and high-CO2 stresses on the metabolism and surrounding microenvironment of the coral Galaxea fascicularis.

Agostini S, Fujimura H, Higuchi T, Yuyama I, Casareto BE, Suzuki Y, Nakano Y.

C R Biol. 2013 Aug;336(8):384-91. doi: 10.1016/j.crvi.2013.07.003. Epub 2013 Aug 28.

PMID:
24018195
17.

Intracellular pH and its response to CO2-driven seawater acidification in symbiotic versus non-symbiotic coral cells.

Gibbin EM, Putnam HM, Davy SK, Gates RD.

J Exp Biol. 2014 Jun 1;217(Pt 11):1963-9. doi: 10.1242/jeb.099549. Epub 2014 Mar 13.

18.

Future reef decalcification under a business-as-usual CO2 emission scenario.

Dove SG, Kline DI, Pantos O, Angly FE, Tyson GW, Hoegh-Guldberg O.

Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):15342-7. doi: 10.1073/pnas.1302701110. Epub 2013 Sep 3.

19.

Coral biomineralization: A focus on intra-skeletal organic matrix and calcification.

Falini G, Fermani S, Goffredo S.

Semin Cell Dev Biol. 2015 Oct;46:17-26. doi: 10.1016/j.semcdb.2015.09.005. Epub 2015 Sep 5. Review.

PMID:
26344100
20.

Morphological plasticity of the coral skeleton under CO2-driven seawater acidification.

Tambutté E, Venn AA, Holcomb M, Segonds N, Techer N, Zoccola D, Allemand D, Tambutté S.

Nat Commun. 2015 Jun 12;6:7368. doi: 10.1038/ncomms8368.

Supplemental Content

Support Center