Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 131

1.

Biochemical characterization of molybdenum cofactor-free nitrate reductase from Neurospora crassa.

Ringel P, Krausze J, van den Heuvel J, Curth U, Pierik AJ, Herzog S, Mendel RR, Kruse T.

J Biol Chem. 2013 May 17;288(20):14657-71. doi: 10.1074/jbc.M113.457960. Epub 2013 Mar 28.

4.

Regulation of molybdenum cofactor species in the green alga Chlamydomonas reinhardtii.

Aguilar MR, Cárdenas J, Fernández E.

Biochim Biophys Acta. 1991 Apr 9;1073(3):463-9.

PMID:
1826614
5.

Kinetic analysis of 14-3-3-inhibited Arabidopsis thaliana nitrate reductase.

Lambeck I, Chi JC, Krizowski S, Mueller S, Mehlmer N, Teige M, Fischer K, Schwarz G.

Biochemistry. 2010 Sep 21;49(37):8177-86. doi: 10.1021/bi1003487.

PMID:
20690630
6.

Identification and biochemical characterization of molybdenum cofactor-binding proteins from Arabidopsis thaliana.

Kruse T, Gehl C, Geisler M, Lehrke M, Ringel P, Hallier S, Hänsch R, Mendel RR.

J Biol Chem. 2010 Feb 26;285(9):6623-35. doi: 10.1074/jbc.M109.060640. Epub 2009 Dec 29.

7.
8.

Identification of two tungstate-sensitive molybdenum cofactor mutants, chl2 and chl7, of Arabidopsis thaliana.

LaBrie ST, Wilkinson JQ, Tsay YF, Feldmann KA, Crawford NM.

Mol Gen Genet. 1992 May;233(1-2):169-76.

PMID:
1534867
9.

Genetic characterization of the Neurospora crassa molybdenum cofactor biosynthesis.

Probst C, Ringel P, Boysen V, Wirsing L, Alexander MM, Mendel RR, Kruse T.

Fungal Genet Biol. 2014 May;66:69-78. doi: 10.1016/j.fgb.2014.02.004. Epub 2014 Feb 23.

PMID:
24569084
10.

Biology of the molybdenum cofactor.

Mendel RR.

J Exp Bot. 2007;58(9):2289-96. Epub 2007 Mar 9. Review.

PMID:
17351249
11.
12.

NarJ is a specific chaperone required for molybdenum cofactor assembly in nitrate reductase A of Escherichia coli.

Blasco F, Dos Santos JP, Magalon A, Frixon C, Guigliarelli B, Santini CL, Giordano G.

Mol Microbiol. 1998 May;28(3):435-47.

13.

Reductive activation in periplasmic nitrate reductase involves chemical modifications of the Mo-cofactor beyond the first coordination sphere of the metal ion.

Jacques JG, Fourmond V, Arnoux P, Sabaty M, Etienne E, Grosse S, Biaso F, Bertrand P, Pignol D, Léger C, Guigliarelli B, Burlat B.

Biochim Biophys Acta. 2014 Feb;1837(2):277-86. doi: 10.1016/j.bbabio.2013.10.013. Epub 2013 Nov 7.

14.

Direct electrochemistry of nitrate reductase from the fungus Neurospora crassa.

Kalimuthu P, Ringel P, Kruse T, Bernhardt PV.

Biochim Biophys Acta. 2016 Sep;1857(9):1506-13. doi: 10.1016/j.bbabio.2016.04.001. Epub 2016 Apr 7.

PMID:
27060250
15.

The Chlamydomonas reinhardtii MoCo carrier protein is multimeric and stabilizes molybdopterin cofactor in a molybdate charged form.

Witte CP, Igeño MI, Mendel R, Schwarz G, Fernández E.

FEBS Lett. 1998 Jul 17;431(2):205-9.

16.

Evidence for MoeA-dependent formation of the molybdenum cofactor from molybdate and molybdopterin in Escherichia coli.

Sandu C, Brandsch R.

Arch Microbiol. 2002 Dec;178(6):465-70. Epub 2002 Sep 3.

PMID:
12420167
17.

Characteristics of Nicotiana tabacum nitrate reductase protein produced in Saccharomyces cerevisiae.

Truong HN, Meyer C, Daniel-Vedele F.

Biochem J. 1991 Sep 1;278 ( Pt 2):393-7.

18.

Electrochemical and kinetic analysis of electron-transfer reactions of Chlorella nitrate reductase.

Kay CJ, Solomonson LP, Barber MJ.

Biochemistry. 1991 Dec 3;30(48):11445-50.

PMID:
1742283
19.

Nitrite reductase and nitric-oxide synthase activity of the mitochondrial molybdopterin enzymes mARC1 and mARC2.

Sparacino-Watkins CE, Tejero J, Sun B, Gauthier MC, Thomas J, Ragireddy V, Merchant BA, Wang J, Azarov I, Basu P, Gladwin MT.

J Biol Chem. 2014 Apr 11;289(15):10345-58. doi: 10.1074/jbc.M114.555177. Epub 2014 Feb 5.

20.

Cell biology of molybdenum in plants.

Mendel RR.

Plant Cell Rep. 2011 Oct;30(10):1787-97. doi: 10.1007/s00299-011-1100-4. Epub 2011 Jun 10. Review.

PMID:
21660547

Supplemental Content

Support Center