Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 203

1.

Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis.

Smith RD, Prévot MS, Fagan RD, Zhang Z, Sedach PA, Siu MK, Trudel S, Berlinguette CP.

Science. 2013 Apr 5;340(6128):60-3. doi: 10.1126/science.1233638. Epub 2013 Mar 28.

2.

Solution-cast metal oxide thin film electrocatalysts for oxygen evolution.

Trotochaud L, Ranney JK, Williams KN, Boettcher SW.

J Am Chem Soc. 2012 Oct 17;134(41):17253-61. doi: 10.1021/ja307507a. Epub 2012 Oct 5.

PMID:
22991896
3.

Noble metal ionic catalysts.

Hegde MS, Madras G, Patil KC.

Acc Chem Res. 2009 Jun 16;42(6):704-12. doi: 10.1021/ar800209s.

PMID:
19425544
4.

Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel.

Smith RD, Prévot MS, Fagan RD, Trudel S, Berlinguette CP.

J Am Chem Soc. 2013 Aug 7;135(31):11580-6. doi: 10.1021/ja403102j. Epub 2013 Jul 24.

PMID:
23883103
5.

Unification of catalytic water oxidation and oxygen reduction reactions: amorphous beat crystalline cobalt iron oxides.

Indra A, Menezes PW, Sahraie NR, Bergmann A, Das C, Tallarida M, Schmeißer D, Strasser P, Driess M.

J Am Chem Soc. 2014 Dec 17;136(50):17530-6. doi: 10.1021/ja509348t. Epub 2014 Dec 3.

PMID:
25469760
6.

Amorphous mixed-metal hydroxide nanostructures for advanced water oxidation catalysts.

Gao YQ, Liu XY, Yang GW.

Nanoscale. 2016 Mar 7;8(9):5015-23. doi: 10.1039/c5nr08989a.

PMID:
26864279
7.

Oxygen Evolution Catalyzed by Nickel-Iron Oxide Nanocrystals with a Nonequilibrium Phase.

Bau JA, Luber EJ, Buriak JM.

ACS Appl Mater Interfaces. 2015 Sep 9;7(35):19755-63. doi: 10.1021/acsami.5b05594. Epub 2015 Aug 27.

PMID:
26293239
8.

Interface-confined oxide nanostructures for catalytic oxidation reactions.

Fu Q, Yang F, Bao X.

Acc Chem Res. 2013 Aug 20;46(8):1692-701. doi: 10.1021/ar300249b. Epub 2013 Mar 4.

PMID:
23458033
9.

Flame synthesis of nanosized Cu-Ce-O, Ni-Ce-O, and Fe-Ce-O catalysts for the water-gas shift (WGS) reaction.

Pati RK, Lee IC, Hou S, Akhuemonkhan O, Gaskell KJ, Wang Q, Frenkel AI, Chu D, Salamanca-Riba LG, Ehrman SH.

ACS Appl Mater Interfaces. 2009 Nov;1(11):2624-35. doi: 10.1021/am900533p.

PMID:
20356136
10.

Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni-Fe Oxide Water Splitting Electrocatalysts.

Görlin M, Chernev P, Ferreira de Araújo J, Reier T, Dresp S, Paul B, Krähnert R, Dau H, Strasser P.

J Am Chem Soc. 2016 May 4;138(17):5603-14. doi: 10.1021/jacs.6b00332. Epub 2016 Apr 26.

PMID:
27031737
11.

Wet oxidation of phenol over transition metal oxide catalysts supported on Ce0.65 Zr0.35 O2 prepared by continuous hydrothermal synthesis in supercritical water.

Kim KH, Kim JR, Ihm SK.

J Hazard Mater. 2009 Aug 15;167(1-3):1158-62. doi: 10.1016/j.jhazmat.2009.01.110. Epub 2009 Feb 6.

PMID:
19264401
12.

High Catalytic Activity of Amorphous Ir-Pi for Oxygen Evolution Reaction.

Irshad A, Munichandraiah N.

ACS Appl Mater Interfaces. 2015 Jul 29;7(29):15765-76. doi: 10.1021/acsami.5b02601. Epub 2015 Jul 14.

PMID:
26132593
13.

A reliable aerosol-spray-assisted approach to produce and optimize amorphous metal oxide catalysts for electrochemical water splitting.

Kuai L, Geng J, Chen C, Kan E, Liu Y, Wang Q, Geng B.

Angew Chem Int Ed Engl. 2014 Jul 14;53(29):7547-51. doi: 10.1002/anie.201404208. Epub 2014 Jun 4.

PMID:
24899118
14.

Electrocatalytic oxygen evolution over supported small amorphous Ni-Fe nanoparticles in alkaline electrolyte.

Qiu Y, Xin L, Li W.

Langmuir. 2014 Jul 8;30(26):7893-901. doi: 10.1021/la501246e. Epub 2014 Jun 24.

PMID:
24914708
15.

Molecular Mixed-Metal Manganese Oxido Cubanes as Precursors to Heterogeneous Oxygen Evolution Catalysts.

Suseno S, McCrory CC, Tran R, Gul S, Yano J, Agapie T.

Chemistry. 2015 Sep 14;21(38):13420-30. doi: 10.1002/chem.201501104. Epub 2015 Aug 4.

16.

Low-Temperature Synthesis of Hierarchical Amorphous Basic Nickel Carbonate Particles for Water Oxidation Catalysis.

Yang Y, Liang F, Li M, Rufford TE, Zhou W, Zhu Z.

ChemSusChem. 2015 Jul 8;8(13):2193-7. doi: 10.1002/cssc.201500182. Epub 2015 Jun 11.

PMID:
26097200
17.

Noble-metal-based catalysts supported on zeolites and macro-mesoporous metal oxide supports for the total oxidation of volatile organic compounds.

Barakat T, Rooke JC, Tidahy HL, Hosseini M, Cousin R, Lamonier JF, Giraudon JM, De Weireld G, Su BL, Siffert S.

ChemSusChem. 2011 Oct 17;4(10):1420-30. doi: 10.1002/cssc.201100282. Epub 2011 Sep 28. Review.

PMID:
21957051
18.

Hydrothermal fabrication and catalytic properties of La(1-x)Sr(x)M(1-y)Fe(y)O(3) (M = Mn, Co) that are highly active for the removal of toluene.

Deng J, Dai H, Jiang H, Zhang L, Wang G, He H, Au CT.

Environ Sci Technol. 2010 Apr 1;44(7):2618-23. doi: 10.1021/es9031997.

PMID:
20192252
19.

Catalytic efficiency of iron(III) oxides in decomposition of hydrogen peroxide: competition between the surface area and crystallinity of nanoparticles.

Hermanek M, Zboril R, Medrik I, Pechousek J, Gregor C.

J Am Chem Soc. 2007 Sep 5;129(35):10929-36. Epub 2007 Aug 11.

PMID:
17691785
20.

Photodecomposition of Metal Nitrate and Chloride Compounds Yields Amorphous Metal Oxide Films.

He J, Weekes DM, Cheng W, Dettelbach KE, Huang A, Li T, Berlinguette CP.

J Am Chem Soc. 2017 Dec 20;139(50):18174-18177. doi: 10.1021/jacs.7b11064. Epub 2017 Dec 7.

PMID:
29215268

Supplemental Content

Support Center