Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 115

1.

Crystal structures of glycoside hydrolase family 3 β-glucosidase 1 from Aspergillus aculeatus.

Suzuki K, Sumitani J, Nam YW, Nishimaki T, Tani S, Wakagi T, Kawaguchi T, Fushinobu S.

Biochem J. 2013 Jun 1;452(2):211-21. doi: 10.1042/BJ20130054.

PMID:
23537284
2.

Three-dimensional structures of two heavily N-glycosylated Aspergillus sp. family GH3 β-D-glucosidases.

Agirre J, Ariza A, Offen WA, Turkenburg JP, Roberts SM, McNicholas S, Harris PV, McBrayer B, Dohnalek J, Cowtan KD, Davies GJ, Wilson KS.

Acta Crystallogr D Struct Biol. 2016 Feb;72(Pt 2):254-65. doi: 10.1107/S2059798315024237. Epub 2016 Jan 28.

3.

Role of a PA14 domain in determining substrate specificity of a glycoside hydrolase family 3 β-glucosidase from Kluyveromyces marxianus.

Yoshida E, Hidaka M, Fushinobu S, Koyanagi T, Minami H, Tamaki H, Kitaoka M, Katayama T, Kumagai H.

Biochem J. 2010 Oct 1;431(1):39-49. doi: 10.1042/BJ20100351.

PMID:
20662765
4.

Structural and functional analyses of beta-glucosidase 3B from Thermotoga neapolitana: a thermostable three-domain representative of glycoside hydrolase 3.

Pozzo T, Pasten JL, Karlsson EN, Logan DT.

J Mol Biol. 2010 Apr 2;397(3):724-39. doi: 10.1016/j.jmb.2010.01.072. Epub 2010 Feb 6.

PMID:
20138890
5.

Crystal structure of endo-xylogalacturonan hydrolase from Aspergillus tubingensis.

Rozeboom HJ, Beldman G, Schols HA, Dijkstra BW.

FEBS J. 2013 Dec;280(23):6061-9. doi: 10.1111/febs.12524. Epub 2013 Oct 11.

6.

Site-saturation mutagenesis for β-glucosidase 1 from Aspergillus aculeatus to accelerate the saccharification of alkaline-pretreated bagasse.

Baba Y, Sumitani JI, Tanaka K, Tani S, Kawaguchi T.

Appl Microbiol Biotechnol. 2016 Dec;100(24):10495-10507. Epub 2016 Jul 21.

PMID:
27444432
7.

The crystal structure of acidic β-galactosidase from Aspergillus oryzae.

Maksimainen MM, Lampio A, Mertanen M, Turunen O, Rouvinen J.

Int J Biol Macromol. 2013 Sep;60:109-15. doi: 10.1016/j.ijbiomac.2013.05.003. Epub 2013 May 17.

PMID:
23688418
8.

Identifying and characterizing the most significant β-glucosidase of the novel species Aspergillus saccharolyticus.

Sørensen A, Ahring BK, Lübeck M, Ubhayasekera W, Bruno KS, Culley DE, Lübeck PS.

Can J Microbiol. 2012 Sep;58(9):1035-46. doi: 10.1139/w2012-076. Epub 2012 Aug 20.

PMID:
22906186
9.

Crystal structure of intracellular family 1 beta-glucosidase BGL1A from the basidiomycete Phanerochaete chrysosporium.

Nijikken Y, Tsukada T, Igarashi K, Samejima M, Wakagi T, Shoun H, Fushinobu S.

FEBS Lett. 2007 Apr 3;581(7):1514-20. Epub 2007 Mar 13.

10.

Biochemical characterization and crystal structures of a fungal family 3 β-glucosidase, Cel3A from Hypocrea jecorina.

Karkehabadi S, Helmich KE, Kaper T, Hansson H, Mikkelsen NE, Gudmundsson M, Piens K, Fujdala M, Banerjee G, Scott-Craig JS, Walton JD, Phillips GN Jr, Sandgren M.

J Biol Chem. 2014 Nov 7;289(45):31624-37. doi: 10.1074/jbc.M114.587766. Epub 2014 Aug 27.

12.

Aspergillus niger β-glucosidase has a cellulase-like tadpole molecular shape: insights into glycoside hydrolase family 3 (GH3) β-glucosidase structure and function.

Lima MA, Oliveira-Neto M, Kadowaki MA, Rosseto FR, Prates ET, Squina FM, Leme AF, Skaf MS, Polikarpov I.

J Biol Chem. 2013 Nov 15;288(46):32991-3005. doi: 10.1074/jbc.M113.479279. Epub 2013 Sep 24.

13.

Crystal structures of Paenibacillus polymyxa beta-glucosidase B complexes reveal the molecular basis of substrate specificity and give new insights into the catalytic machinery of family I glycosidases.

Isorna P, Polaina J, Latorre-García L, Cañada FJ, González B, Sanz-Aparicio J.

J Mol Biol. 2007 Aug 31;371(5):1204-18. Epub 2007 Jun 2.

PMID:
17585934
14.

Refined crystal structures of glucoamylase from Aspergillus awamori var. X100.

Aleshin AE, Hoffman C, Firsov LM, Honzatko RB.

J Mol Biol. 1994 May 13;238(4):575-91.

PMID:
8176747
15.

Crystal structures of Aspergillus japonicus fructosyltransferase complex with donor/acceptor substrates reveal complete subsites in the active site for catalysis.

Chuankhayan P, Hsieh CY, Huang YC, Hsieh YY, Guan HH, Hsieh YC, Tien YC, Chen CD, Chiang CM, Chen CJ.

J Biol Chem. 2010 Jul 23;285(30):23251-64. doi: 10.1074/jbc.M110.113027. Epub 2010 May 13.

16.

X-ray crystal structures of Phanerochaete chrysosporium Laminarinase 16A in complex with products from lichenin and laminarin hydrolysis.

Vasur J, Kawai R, Andersson E, Igarashi K, Sandgren M, Samejima M, Ståhlberg J.

FEBS J. 2009 Jul;276(14):3858-69. doi: 10.1111/j.1742-4658.2009.07099.x. Epub 2009 Jun 17.

17.

Crystal structure of exo-inulinase from Aspergillus awamori: the enzyme fold and structural determinants of substrate recognition.

Nagem RA, Rojas AL, Golubev AM, Korneeva OS, Eneyskaya EV, Kulminskaya AA, Neustroev KN, Polikarpov I.

J Mol Biol. 2004 Nov 19;344(2):471-80.

PMID:
15522299
18.

Exchanging a single amino acid residue generates or weakens a +2 cellooligosaccharide binding subsite in rice β-glucosidases.

Sansenya S, Maneesan J, Cairns JR.

Carbohydr Res. 2012 Apr 1;351:130-3. doi: 10.1016/j.carres.2012.01.010. Epub 2012 Jan 28.

PMID:
22341501
19.

Dissecting the catalytic mechanism of a plant beta-D-glucan glucohydrolase through structural biology using inhibitors and substrate analogues.

Hrmova M, Fincher GB.

Carbohydr Res. 2007 Sep 3;342(12-13):1613-23. Epub 2007 May 18. Review.

PMID:
17548065
20.

N-glycosylation affects the proper folding, enzymatic characteristics and production of a fungal ß-glucosidase.

Wei W, Chen L, Zou G, Wang Q, Yan X, Zhang J, Wang C, Zhou Z.

Biotechnol Bioeng. 2013 Dec;110(12):3075-84.

PMID:
24308062

Supplemental Content

Support Center