Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Architecture and metamorphosis.

Guo M, Yang XL.

Top Curr Chem. 2014;344:89-118. doi: 10.1007/128_2013_424. Review.

2.

Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein-protein interactions and characterization of a core protein.

Quevillon S, Robinson JC, Berthonneau E, Siatecka M, Mirande M.

J Mol Biol. 1999 Jan 8;285(1):183-95.

PMID:
9878398
3.

New functions of aminoacyl-tRNA synthetases beyond translation.

Guo M, Yang XL, Schimmel P.

Nat Rev Mol Cell Biol. 2010 Sep;11(9):668-74. doi: 10.1038/nrm2956. Epub 2010 Aug 11. Review.

4.

Calpain Cleaves Most Components in the Multiple Aminoacyl-tRNA Synthetase Complex and Affects Their Functions.

Lei HY, Zhou XL, Ruan ZR, Sun WC, Eriani G, Wang ED.

J Biol Chem. 2015 Oct 23;290(43):26314-27. doi: 10.1074/jbc.M115.681999. Epub 2015 Aug 31.

5.

Assembly of Multi-tRNA Synthetase Complex via Heterotetrameric Glutathione Transferase-homology Domains.

Cho HY, Maeng SJ, Cho HJ, Choi YS, Chung JM, Lee S, Kim HK, Kim JH, Eom CY, Kim YG, Guo M, Jung HS, Kang BS, Kim S.

J Biol Chem. 2015 Dec 4;290(49):29313-28. doi: 10.1074/jbc.M115.690867. Epub 2015 Oct 15.

6.

Structure of the ArgRS-GlnRS-AIMP1 complex and its implications for mammalian translation.

Fu Y, Kim Y, Jin KS, Kim HS, Kim JH, Wang D, Park M, Jo CH, Kwon NH, Kim D, Kim MH, Jeon YH, Hwang KY, Kim S, Cho Y.

Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15084-9. doi: 10.1073/pnas.1408836111. Epub 2014 Oct 6.

7.

Structural disorder in expanding the functionome of aminoacyl-tRNA synthetases.

Yang XL.

Chem Biol. 2013 Sep 19;20(9):1093-9. doi: 10.1016/j.chembiol.2013.07.013. Review.

9.

Role of aminoacyl-tRNA synthetases in infectious diseases and targets for therapeutic development.

Dewan V, Reader J, Forsyth KM.

Top Curr Chem. 2014;344:293-329. doi: 10.1007/128_2013_425. Review.

PMID:
23666077
10.
11.

Aminoacyl-tRNA synthetase-interacting multifunctional proteins (AIMPs): a triad for cellular homeostasis.

Park SG, Choi EC, Kim S.

IUBMB Life. 2010 Apr;62(4):296-302. doi: 10.1002/iub.324. Review.

12.
13.

Exploring the evolutionary diversity and assembly modes of multi-aminoacyl-tRNA synthetase complexes: lessons from unicellular organisms.

Laporte D, Huot JL, Bader G, Enkler L, Senger B, Becker HD.

FEBS Lett. 2014 Nov 28;588(23):4268-78. doi: 10.1016/j.febslet.2014.10.007. Epub 2014 Oct 12. Review.

14.

Evolutionary and structural annotation of disease-associated mutations in human aminoacyl-tRNA synthetases.

Datt M, Sharma A.

BMC Genomics. 2014 Dec 4;15:1063. doi: 10.1186/1471-2164-15-1063.

15.

Protein-protein interactions and multi-component complexes of aminoacyl-tRNA synthetases.

Kim JH, Han JM, Kim S.

Top Curr Chem. 2014;344:119-44. doi: 10.1007/128_2013_479. Review.

PMID:
24072587
16.

Common peptides study of aminoacyl-tRNA synthetases.

Gottlieb A, Frenkel-Morgenstern M, Safro M, Horn D.

PLoS One. 2011;6(5):e20361. doi: 10.1371/journal.pone.0020361. Epub 2011 May 27.

17.

Non-catalytic regulation of gene expression by aminoacyl-tRNA synthetases.

Yao P, Poruri K, Martinis SA, Fox PL.

Top Curr Chem. 2014;344:167-87. doi: 10.1007/128_2013_422. Review.

PMID:
23536244
18.

A chimaeric glutamyl:glutaminyl-tRNA synthetase: implications for evolution.

Saha R, Dasgupta S, Basu G, Roy S.

Biochem J. 2009 Jan 15;417(2):449-55. doi: 10.1042/BJ20080747.

PMID:
18817520
19.

tRNA(Pro) anticodon recognition by Thermus thermophilus prolyl-tRNA synthetase.

Cusack S, Yaremchuk A, Krikliviy I, Tukalo M.

Structure. 1998 Jan 15;6(1):101-8.

20.

Evolution of function of a fused metazoan tRNA synthetase.

Ray PS, Sullivan JC, Jia J, Francis J, Finnerty JR, Fox PL.

Mol Biol Evol. 2011 Jan;28(1):437-47. doi: 10.1093/molbev/msq246. Epub 2010 Sep 9.

Supplemental Content

Support Center