Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Meta-analysis of gene expression data identifies causal genes for prostate cancer.

Wang XY, Hao JW, Zhou RJ, Zhang XS, Yan TZ, Ding DG, Shan L.

Asian Pac J Cancer Prev. 2013;14(1):457-61.

2.

Factor interaction analysis for chromosome 8 and DNA methylation alterations highlights innate immune response suppression and cytoskeletal changes in prostate cancer.

Schulz WA, Alexa A, Jung V, Hader C, Hoffmann MJ, Yamanaka M, Fritzsche S, Wlazlinski A, Müller M, Lengauer T, Engers R, Florl AR, Wullich B, Rahnenführer J.

Mol Cancer. 2007 Feb 5;6:14.

3.

Expression of the actin-associated protein transgelin (SM22) is decreased in prostate cancer.

Prasad PD, Stanton JA, Assinder SJ.

Cell Tissue Res. 2010 Feb;339(2):337-47. doi: 10.1007/s00441-009-0902-y. Epub 2009 Dec 11.

PMID:
20012321
4.

Androgens down-regulate myosin light chain kinase in human prostate cancer cells.

Léveillé N, Fournier A, Labrie C.

J Steroid Biochem Mol Biol. 2009 Apr;114(3-5):174-9. doi: 10.1016/j.jsbmb.2009.02.002. Epub 2009 Feb 13.

PMID:
19429448
5.

MicroRNA-205 inhibits cancer cell migration and invasion via modulation of centromere protein F regulating pathways in prostate cancer.

Nishikawa R, Goto Y, Kurozumi A, Matsushita R, Enokida H, Kojima S, Naya Y, Nakagawa M, Ichikawa T, Seki N.

Int J Urol. 2015 Sep;22(9):867-77. doi: 10.1111/iju.12829. Epub 2015 Jun 7.

6.

Analysis of differentially expressed genes in LNCaP prostate cancer progression model.

Xie BX, Zhang H, Wang J, Pang B, Wu RQ, Qian XL, Yu L, Li SH, Shi QG, Huang CF, Zhou JG.

J Androl. 2011 Mar-Apr;32(2):170-82. doi: 10.2164/jandrol.109.008748. Epub 2010 Sep 23.

PMID:
20864652
7.

Fascin regulates prostate cancer cell invasion and is associated with metastasis and biochemical failure in prostate cancer.

Darnel AD, Behmoaram E, Vollmer RT, Corcos J, Bijian K, Sircar K, Su J, Jiao J, Alaoui-Jamali MA, Bismar TA.

Clin Cancer Res. 2009 Feb 15;15(4):1376-83. doi: 10.1158/1078-0432.CCR-08-1789.

8.

Differentially expressed genes in the prostate cancer cell line LNCaP after exposure to androgen and anti-androgen.

Coutinho-Camillo CM, Salaorni S, Sarkis AS, Nagai MA.

Cancer Genet Cytogenet. 2006 Apr 15;166(2):130-8.

PMID:
16631469
9.

Molecular profiling of prostatic acinar morphogenesis identifies PDCD4 and KLF6 as tissue architecture-specific prognostic markers in prostate cancer.

Li CR, Su JJ, Wang WY, Lee MT, Wang TY, Jiang KY, Li CF, Hsu JM, Chen CK, Chen M, Jiang SS, Weaver VM, Tsai KK.

Am J Pathol. 2013 Feb;182(2):363-74. doi: 10.1016/j.ajpath.2012.10.024. Epub 2012 Dec 4.

10.

Microarray analysis of differential gene expression in androgen independent prostate cancer using a metastatic human prostate cancer cell line model.

Balaji KC, Rao PS, Smith DJ, Louis S, Smith LM, Sherman S, Bacich D, O'Keefe D.

Urol Oncol. 2004 Jul-Aug;22(4):313-20.

PMID:
15283889
11.

Flightless I Homolog Represses Prostate Cancer Progression through Targeting Androgen Receptor Signaling.

Wang T, Song W, Chen Y, Chen R, Liu Z, Wu L, Li M, Yang J, Wang L, Liu J, Ye Z, Wang C, Chen K.

Clin Cancer Res. 2016 Mar 15;22(6):1531-44. doi: 10.1158/1078-0432.CCR-15-1632. Epub 2015 Nov 2.

12.

Development, progression, and androgen-dependence of prostate tumors in probasin-large T antigen transgenic mice: a model for prostate cancer.

Kasper S, Sheppard PC, Yan Y, Pettigrew N, Borowsky AD, Prins GS, Dodd JG, Duckworth ML, Matusik RJ.

Lab Invest. 1998 Jun;78(6):i-xv.

PMID:
9645768
13.

Myosin, transgelin, and myosin light chain kinase: expression and function in asthma.

Léguillette R, Laviolette M, Bergeron C, Zitouni N, Kogut P, Solway J, Kachmar L, Hamid Q, Lauzon AM.

Am J Respir Crit Care Med. 2009 Feb 1;179(3):194-204. doi: 10.1164/rccm.200609-1367OC. Epub 2008 Nov 14.

14.

Development, progression, and androgen-dependence of prostate tumors in probasin-large T antigen transgenic mice: a model for prostate cancer.

Kasper S, Sheppard PC, Yan Y, Pettigrew N, Borowsky AD, Prins GS, Dodd JG, Duckworth ML, Matusik RJ.

Lab Invest. 1998 Mar;78(3):319-33. Corrected and republished in: Lab Invest. 1998 Jun;78(6):i-xv.

PMID:
9520945
15.

Restoration of miR-145 expression suppresses cell proliferation, migration and invasion in prostate cancer by targeting FSCN1.

Fuse M, Nohata N, Kojima S, Sakamoto S, Chiyomaru T, Kawakami K, Enokida H, Nakagawa M, Naya Y, Ichikawa T, Seki N.

Int J Oncol. 2011 Apr;38(4):1093-101. doi: 10.3892/ijo.2011.919. Epub 2011 Jan 21.

PMID:
21258769
16.

Differentially expressed androgen-regulated genes in androgen-sensitive tissues reveal potential biomarkers of early prostate cancer.

Altintas DM, Allioli N, Decaussin M, de Bernard S, Ruffion A, Samarut J, Vlaeminck-Guillem V.

PLoS One. 2013 Jun 28;8(6):e66278. doi: 10.1371/journal.pone.0066278. Print 2013.

17.

MYLK and MYL9 expression in non-small cell lung cancer identified by bioinformatics analysis of public expression data.

Tan X, Chen M.

Tumour Biol. 2014 Dec;35(12):12189-200. doi: 10.1007/s13277-014-2527-3. Epub 2014 Sep 2.

PMID:
25179839
18.

Identification of candidate prostate cancer genes through comparative expression-profiling of seminal vesicle.

Thompson M, Lapointe J, Choi YL, Ong DE, Higgins JP, Brooks JD, Pollack JR.

Prostate. 2008 Aug 1;68(11):1248-56. doi: 10.1002/pros.20792.

19.

Characterization of transcriptional changes in ERG rearrangement-positive prostate cancer identifies the regulation of metabolic sensors such as neuropeptide Y.

Massoner P, Kugler KG, Unterberger K, Kuner R, Mueller LA, Fälth M, Schäfer G, Seifarth C, Ecker S, Verdorfer I, Graber A, Sültmann H, Klocker H.

PLoS One. 2013;8(2):e55207. doi: 10.1371/journal.pone.0055207. Epub 2013 Feb 4.

20.

Identification of metastasis-associated genes in prostate cancer by genetic profiling of human prostate cancer cell lines.

Trojan L, Schaaf A, Steidler A, Haak M, Thalmann G, Knoll T, Gretz N, Alken P, Michel MS.

Anticancer Res. 2005 Jan-Feb;25(1A):183-91.

Supplemental Content

Support Center