Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 393

1.

The tryptophan residue at the active site tunnel entrance of Trichoderma reesei cellobiohydrolase Cel7A is important for initiation of degradation of crystalline cellulose.

Nakamura A, Tsukada T, Auer S, Furuta T, Wada M, Koivula A, Igarashi K, Samejima M.

J Biol Chem. 2013 May 10;288(19):13503-10. doi: 10.1074/jbc.M113.452623. Epub 2013 Mar 26.

2.

High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose.

Igarashi K, Koivula A, Wada M, Kimura S, Penttilä M, Samejima M.

J Biol Chem. 2009 Dec 25;284(52):36186-90. doi: 10.1074/jbc.M109.034611. Epub 2009 Oct 26.

3.

Tryptophan 272: an essential determinant of crystalline cellulose degradation by Trichoderma reesei cellobiohydrolase Cel6A.

Koivula A, Kinnari T, Harjunpää V, Ruohonen L, Teleman A, Drakenberg T, Rouvinen J, Jones TA, Teeri TT.

FEBS Lett. 1998 Jun 16;429(3):341-6. Erratum in: FEBS Lett 1999 Mar 26;447(2-3):334.

4.

Binding site dynamics and aromatic-carbohydrate interactions in processive and non-processive family 7 glycoside hydrolases.

Taylor CB, Payne CM, Himmel ME, Crowley MF, McCabe C, Beckham GT.

J Phys Chem B. 2013 May 2;117(17):4924-33. doi: 10.1021/jp401410h. Epub 2013 Apr 10.

PMID:
23534900
5.

Kinetics of cellobiohydrolase (Cel7A) variants with lowered substrate affinity.

Kari J, Olsen J, Borch K, Cruys-Bagger N, Jensen K, Westh P.

J Biol Chem. 2014 Nov 21;289(47):32459-68. doi: 10.1074/jbc.M114.604264. Epub 2014 Sep 30.

6.

Single-molecule imaging analysis of elementary reaction steps of Trichoderma reesei cellobiohydrolase I (Cel7A) hydrolyzing crystalline cellulose Iα and IIII.

Shibafuji Y, Nakamura A, Uchihashi T, Sugimoto N, Fukuda S, Watanabe H, Samejima M, Ando T, Noji H, Koivula A, Igarashi K, Iino R.

J Biol Chem. 2014 May 16;289(20):14056-65. doi: 10.1074/jbc.M113.546085. Epub 2014 Apr 1.

7.

Inter-domain Synergism Is Required for Efficient Feeding of Cellulose Chain into Active Site of Cellobiohydrolase Cel7A.

Kont R, Kari J, Borch K, Westh P, Väljamäe P.

J Biol Chem. 2016 Dec 9;291(50):26013-26023. Epub 2016 Oct 25.

PMID:
27780868
8.

Engineering the exo-loop of Trichoderma reesei cellobiohydrolase, Cel7A. A comparison with Phanerochaete chrysosporium Cel7D.

von Ossowski I, Ståhlberg J, Koivula A, Piens K, Becker D, Boer H, Harle R, Harris M, Divne C, Mahdi S, Zhao Y, Driguez H, Claeyssens M, Sinnott ML, Teeri TT.

J Mol Biol. 2003 Oct 31;333(4):817-29.

PMID:
14568538
9.

The cellulose-binding domain of cellobiohydrolase Cel7A from Trichoderma reesei is also a thermostabilizing domain.

Hall M, Rubin J, Behrens SH, Bommarius AS.

J Biotechnol. 2011 Oct 10;155(4):370-6. doi: 10.1016/j.jbiotec.2011.07.016. Epub 2011 Jul 22.

PMID:
21807036
10.

Molecular Dynamics Simulations of Family 7 Cellobiohydrolase Mutants Aimed at Reducing Product Inhibition.

Silveira RL, Skaf MS.

J Phys Chem B. 2015 Jul 23;119(29):9295-303. doi: 10.1021/jp509911m. Epub 2014 Dec 12.

PMID:
25436435
11.

Hypocrea jecorina (Trichoderma reesei) Cel7A as a molecular machine: A docking study.

Mulakala C, Reilly PJ.

Proteins. 2005 Sep 1;60(4):598-605.

PMID:
16001418
12.

The impact of Trichoderma reesei Cel7A carbohydrate binding domain mutations on its binding to a cellulose surface: a molecular dynamics free energy study.

Li T, Yan S, Yao L.

J Mol Model. 2012 Apr;18(4):1355-64. doi: 10.1007/s00894-011-1167-4. Epub 2011 Jul 15.

PMID:
21761177
13.

Joint X-ray crystallographic and molecular dynamics study of cellobiohydrolase I from Trichoderma harzianum: deciphering the structural features of cellobiohydrolase catalytic activity.

Textor LC, Colussi F, Silveira RL, Serpa V, de Mello BL, Muniz JR, Squina FM, Pereira N Jr, Skaf MS, Polikarpov I.

FEBS J. 2013 Jan;280(1):56-69. doi: 10.1111/febs.12049. Epub 2012 Nov 29.

15.

Identification of amino acids responsible for processivity in a Family 1 carbohydrate-binding module from a fungal cellulase.

Beckham GT, Matthews JF, Bomble YJ, Bu L, Adney WS, Himmel ME, Nimlos MR, Crowley MF.

J Phys Chem B. 2010 Jan 28;114(3):1447-53. doi: 10.1021/jp908810a.

PMID:
20050714
16.

Computational simulations of the Trichoderma reesei cellobiohydrolase I acting on microcrystalline cellulose Ibeta: the enzyme-substrate complex.

Zhong L, Matthews JF, Hansen PI, Crowley MF, Cleary JM, Walker RC, Nimlos MR, Brooks CL 3rd, Adney WS, Himmel ME, Brady JW.

Carbohydr Res. 2009 Oct 12;344(15):1984-92. doi: 10.1016/j.carres.2009.07.005. Epub 2009 Jul 18.

PMID:
19699474
17.

Single-molecule Imaging Analysis of Binding, Processive Movement, and Dissociation of Cellobiohydrolase Trichoderma reesei Cel6A and Its Domains on Crystalline Cellulose.

Nakamura A, Tasaki T, Ishiwata D, Yamamoto M, Okuni Y, Visootsat A, Maximilien M, Noji H, Uchiyama T, Samejima M, Igarashi K, Iino R.

J Biol Chem. 2016 Oct 21;291(43):22404-22413. Epub 2016 Sep 8.

PMID:
27609516
18.

Transient kinetics and rate-limiting steps for the processive cellobiohydrolase Cel7A: effects of substrate structure and carbohydrate binding domain.

Cruys-Bagger N, Tatsumi H, Ren GR, Borch K, Westh P.

Biochemistry. 2013 Dec 10;52(49):8938-48. doi: 10.1021/bi401210n. Epub 2013 Nov 20.

PMID:
24228828
19.
20.

Investigation of the function of mutated cellulose-binding domains of Trichoderma reesei cellobiohydrolase I.

Reinikainen T, Ruohonen L, Nevanen T, Laaksonen L, Kraulis P, Jones TA, Knowles JK, Teeri TT.

Proteins. 1992 Dec;14(4):475-82.

PMID:
1438185

Supplemental Content

Support Center