Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102


Candida albicans commensalism and pathogenicity are intertwined traits directed by a tightly knit transcriptional regulatory circuit.

Pérez JC, Kumamoto CA, Johnson AD.

PLoS Biol. 2013;11(3):e1001510. doi: 10.1371/journal.pbio.1001510. Epub 2013 Mar 19.


Self-regulation of Candida albicans population size during GI colonization.

White SJ, Rosenbach A, Lephart P, Nguyen D, Benjamin A, Tzipori S, Whiteway M, Mecsas J, Kumamoto CA.

PLoS Pathog. 2007 Dec;3(12):e184.


An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis.

Chen C, Pande K, French SD, Tuch BB, Noble SM.

Cell Host Microbe. 2011 Aug 18;10(2):118-35. doi: 10.1016/j.chom.2011.07.005.


Transcriptional regulators Cph1p and Efg1p mediate activation of the Candida albicans virulence gene SAP5 during infection.

Staib P, Kretschmar M, Nichterlein T, Hof H, Morschhäuser J.

Infect Immun. 2002 Feb;70(2):921-7.


In vivo systematic analysis of Candida albicans Zn2-Cys6 transcription factors mutants for mice organ colonization.

Vandeputte P, Ischer F, Sanglard D, Coste AT.

PLoS One. 2011;6(10):e26962. doi: 10.1371/journal.pone.0026962. Epub 2011 Oct 31.


Interactions of the fungal pathogen Candida albicans with the host.

Rupp S.

Future Microbiol. 2007 Apr;2(2):141-51. Review.


Activation and alliance of regulatory pathways in C. albicans during mammalian infection.

Xu W, Solis NV, Ehrlich RL, Woolford CA, Filler SG, Mitchell AP.

PLoS Biol. 2015 Feb 18;13(2):e1002076. doi: 10.1371/journal.pbio.1002076. eCollection 2015 Feb.


Transcriptional regulation of carbohydrate metabolism in the human pathogen Candida albicans.

Askew C, Sellam A, Epp E, Hogues H, Mullick A, Nantel A, Whiteway M.

PLoS Pathog. 2009 Oct;5(10):e1000612. doi: 10.1371/journal.ppat.1000612. Epub 2009 Oct 9.


Distinct roles of Candida albicans-specific genes in host-pathogen interactions.

Wilson D, Mayer FL, Miramón P, Citiulo F, Slesiona S, Jacobsen ID, Hube B.

Eukaryot Cell. 2014 Aug;13(8):977-89. doi: 10.1128/EC.00051-14. Epub 2014 Mar 7.


Differential activation of a Candida albicans virulence gene family during infection.

Staib P, Kretschmar M, Nichterlein T, Hof H, Morschhäuser J.

Proc Natl Acad Sci U S A. 2000 May 23;97(11):6102-7.


UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence.

Banerjee M, Thompson DS, Lazzell A, Carlisle PL, Pierce C, Monteagudo C, López-Ribot JL, Kadosh D.

Mol Biol Cell. 2008 Apr;19(4):1354-65. doi: 10.1091/mbc.E07-11-1110. Epub 2008 Jan 23.


Adaptations of Candida albicans for growth in the mammalian intestinal tract.

Rosenbach A, Dignard D, Pierce JV, Whiteway M, Kumamoto CA.

Eukaryot Cell. 2010 Jul;9(7):1075-86. doi: 10.1128/EC.00034-10. Epub 2010 Apr 30.


Glycerophosphocholine utilization by Candida albicans: role of the Git3 transporter in virulence.

Bishop AC, Ganguly S, Solis NV, Cooley BM, Jensen-Seaman MI, Filler SG, Mitchell AP, Patton-Vogt J.

J Biol Chem. 2013 Nov 22;288(47):33939-52. doi: 10.1074/jbc.M113.505735. Epub 2013 Oct 10.


The Snf1-activating kinase Sak1 is a key regulator of metabolic adaptation and in vivo fitness of Candida albicans.

Ramírez-Zavala B, Mottola A, Haubenreißer J, Schneider S, Allert S, Brunke S, Ohlsen K, Hube B, Morschhäuser J.

Mol Microbiol. 2017 Jun;104(6):989-1007. doi: 10.1111/mmi.13674. Epub 2017 Apr 18.


The NDR/LATS kinase Cbk1 controls the activity of the transcriptional regulator Bcr1 during biofilm formation in Candida albicans.

Gutiérrez-Escribano P, Zeidler U, Suárez MB, Bachellier-Bassi S, Clemente-Blanco A, Bonhomme J, Vázquez de Aldana CR, d'Enfert C, Correa-Bordes J.

PLoS Pathog. 2012;8(5):e1002683. doi: 10.1371/journal.ppat.1002683. Epub 2012 May 10.


Variation in Candida albicans EFG1 expression enables host-dependent changes in colonizing fungal populations.

Pierce JV, Kumamoto CA.

MBio. 2012 Jul 24;3(4):e00117-12. doi: 10.1128/mBio.00117-12. Print 2012.


N-acetylglucosamine (GlcNAc)-inducible gene GIG2 is a novel component of GlcNAc metabolism in Candida albicans.

Ghosh S, Hanumantha Rao K, Bhavesh NS, Das G, Dwivedi VP, Datta A.

Eukaryot Cell. 2014 Jan;13(1):66-76. doi: 10.1128/EC.00244-13. Epub 2013 Nov 1.


Discovery of a "white-gray-opaque" tristable phenotypic switching system in candida albicans: roles of non-genetic diversity in host adaptation.

Tao L, Du H, Guan G, Dai Y, Nobile CJ, Liang W, Cao C, Zhang Q, Zhong J, Huang G.

PLoS Biol. 2014 Apr 1;12(4):e1001830. doi: 10.1371/journal.pbio.1001830. eCollection 2014 Apr.


Candida albicans hyphal formation and the expression of the Efg1-regulated proteinases Sap4 to Sap6 are required for the invasion of parenchymal organs.

Felk A, Kretschmar M, Albrecht A, Schaller M, Beinhauer S, Nichterlein T, Sanglard D, Korting HC, Schäfer W, Hube B.

Infect Immun. 2002 Jul;70(7):3689-700.

Supplemental Content

Support Center