Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 112

1.

Nkx2-1 represses a latent gastric differentiation program in lung adenocarcinoma.

Snyder EL, Watanabe H, Magendantz M, Hoersch S, Chen TA, Wang DG, Crowley D, Whittaker CA, Meyerson M, Kimura S, Jacks T.

Mol Cell. 2013 Apr 25;50(2):185-99. doi: 10.1016/j.molcel.2013.02.018. Epub 2013 Mar 21.

2.

Kras(G12D) and Nkx2-1 haploinsufficiency induce mucinous adenocarcinoma of the lung.

Maeda Y, Tsuchiya T, Hao H, Tompkins DH, Xu Y, Mucenski ML, Du L, Keiser AR, Fukazawa T, Naomoto Y, Nagayasu T, Whitsett JA.

J Clin Invest. 2012 Dec;122(12):4388-400. doi: 10.1172/JCI64048. Epub 2012 Nov 12.

3.

KRAS and NKX2-1 Mutations in Invasive Mucinous Adenocarcinoma of the Lung.

Hwang DH, Sholl LM, Rojas-Rudilla V, Hall DL, Shivdasani P, Garcia EP, MacConaill LE, Vivero M, Hornick JL, Kuo FC, Lindeman NI, Dong F.

J Thorac Oncol. 2016 Apr;11(4):496-503. doi: 10.1016/j.jtho.2016.01.010. Epub 2016 Jan 30.

4.

Foxa2 and Cdx2 cooperate with Nkx2-1 to inhibit lung adenocarcinoma metastasis.

Li CM, Gocheva V, Oudin MJ, Bhutkar A, Wang SY, Date SR, Ng SR, Whittaker CA, Bronson RT, Snyder EL, Gertler FB, Jacks T.

Genes Dev. 2015 Sep 1;29(17):1850-62. doi: 10.1101/gad.267393.115.

5.

The complexity of thyroid transcription factor 1 with both pro- and anti-oncogenic activities.

Mu D.

J Biol Chem. 2013 Aug 30;288(35):24992-5000. doi: 10.1074/jbc.R113.491647. Epub 2013 Jul 1. Review.

6.

Physical and functional interactions between homeodomain NKX2.1 and winged helix/forkhead FOXA1 in lung epithelial cells.

Minoo P, Hu L, Xing Y, Zhu NL, Chen H, Li M, Borok Z, Li C.

Mol Cell Biol. 2007 Mar;27(6):2155-65. Epub 2007 Jan 12.

7.

LKB1 loss by alteration of the NKX2-1/p53 pathway promotes tumor malignancy and predicts poor survival and relapse in lung adenocarcinomas.

Tsai LH, Chen PM, Cheng YW, Chen CY, Sheu GT, Wu TC, Lee H.

Oncogene. 2014 Jul 17;33(29):3851-60. doi: 10.1038/onc.2013.353. Epub 2013 Sep 2.

PMID:
23995788
8.

Suppression of lung adenocarcinoma progression by Nkx2-1.

Winslow MM, Dayton TL, Verhaak RG, Kim-Kiselak C, Snyder EL, Feldser DM, Hubbard DD, DuPage MJ, Whittaker CA, Hoersch S, Yoon S, Crowley D, Bronson RT, Chiang DY, Meyerson M, Jacks T.

Nature. 2011 May 5;473(7345):101-4. doi: 10.1038/nature09881. Epub 2011 Apr 6.

9.

Integrated cistromic and expression analysis of amplified NKX2-1 in lung adenocarcinoma identifies LMO3 as a functional transcriptional target.

Watanabe H, Francis JM, Woo MS, Etemad B, Lin W, Fries DF, Peng S, Snyder EL, Tata PR, Izzo F, Schinzel AC, Cho J, Hammerman PS, Verhaak RG, Hahn WC, Rajagopal J, Jacks T, Meyerson M.

Genes Dev. 2013 Jan 15;27(2):197-210. doi: 10.1101/gad.203208.112. Epub 2013 Jan 15.

10.

The predominant expression of hepatocyte nuclear factor 4α (HNF4α) in thyroid transcription factor-1 (TTF-1)-negative pulmonary adenocarcinoma.

Kunii R, Jiang S, Hasegawa G, Yamamoto T, Umezu H, Watanabe T, Tsuchida M, Hashimoto T, Hamakubo T, Kodama T, Sasai K, Naito M.

Histopathology. 2011 Feb;58(3):467-76. doi: 10.1111/j.1365-2559.2011.03764.x. Epub 2011 Feb 23.

PMID:
21348892
11.

Airway epithelial transcription factor NK2 homeobox 1 inhibits mucous cell metaplasia and Th2 inflammation.

Maeda Y, Chen G, Xu Y, Haitchi HM, Du L, Keiser AR, Howarth PH, Davies DE, Holgate ST, Whitsett JA.

Am J Respir Crit Care Med. 2011 Aug 15;184(4):421-9. doi: 10.1164/rccm.201101-0106OC.

12.

Neuroendocrine differentiation in the 12T-10 transgenic prostate mouse model mimics endocrine differentiation of pancreatic beta cells.

Gupta A, Wang Y, Browne C, Kim S, Case T, Paul M, Wills ML, Matusik RJ.

Prostate. 2008 Jan 1;68(1):50-60.

PMID:
18004726
13.

Compensatory roles of Foxa1 and Foxa2 during lung morphogenesis.

Wan H, Dingle S, Xu Y, Besnard V, Kaestner KH, Ang SL, Wert S, Stahlman MT, Whitsett JA.

J Biol Chem. 2005 Apr 8;280(14):13809-16. Epub 2005 Jan 24.

14.

Nkx2.1 transcription factor in lung cells and a transforming growth factor-beta1 heterozygous mouse model of lung carcinogenesis.

Kang Y, Hebron H, Ozbun L, Mariano J, Minoo P, Jakowlew SB.

Mol Carcinog. 2004 Aug;40(4):212-31.

PMID:
15264213
15.

Activation of NF-κB by SOD2 promotes the aggressiveness of lung adenocarcinoma by modulating NKX2-1-mediated IKKβ expression.

Chen PM, Wu TC, Wang YC, Cheng YW, Sheu GT, Chen CY, Lee H.

Carcinogenesis. 2013 Nov;34(11):2655-63. doi: 10.1093/carcin/bgt220. Epub 2013 Jun 19.

PMID:
23784082
16.

Nkx2-1: a novel tumor biomarker of lung cancer.

Yang L, Lin M, Ruan WJ, Dong LL, Chen EG, Wu XH, Ying KJ.

J Zhejiang Univ Sci B. 2012 Nov;13(11):855-66. doi: 10.1631/jzus.B1100382. Review.

17.

Genome-wide analyses of Nkx2-1 binding to transcriptional target genes uncover novel regulatory patterns conserved in lung development and tumors.

Tagne JB, Gupta S, Gower AC, Shen SS, Varma S, Lakshminarayanan M, Cao Y, Spira A, Volkert TL, Ramirez MI.

PLoS One. 2012;7(1):e29907. doi: 10.1371/journal.pone.0029907. Epub 2012 Jan 5.

18.
19.

Hippo/Yap signaling controls epithelial progenitor cell proliferation and differentiation in the embryonic and adult lung.

Lange AW, Sridharan A, Xu Y, Stripp BR, Perl AK, Whitsett JA.

J Mol Cell Biol. 2015 Feb;7(1):35-47. doi: 10.1093/jmcb/mju046. Epub 2014 Dec 5.

20.

NKX2-1/TTF-1: an enigmatic oncogene that functions as a double-edged sword for cancer cell survival and progression.

Yamaguchi T, Hosono Y, Yanagisawa K, Takahashi T.

Cancer Cell. 2013 Jun 10;23(6):718-23. doi: 10.1016/j.ccr.2013.04.002. Review.

Supplemental Content

Support Center