Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 114

1.

Molecular simulation to investigate the cofactor specificity for pichia stipitis Xylose reductase.

Xia XL, Cong S, Weng XR, Chen JH, Wang JF, Chou KC.

Med Chem. 2013 Nov;9(7):985-92.

PMID:
23521003
2.

Insights from modeling the 3D structure of NAD(P)H-dependent D-xylose reductase of Pichia stipitis and its binding interactions with NAD and NADP.

Wang JF, Wei DQ, Lin Y, Wang YH, Du HL, Li YX, Chou KC.

Biochem Biophys Res Commun. 2007 Jul 27;359(2):323-9. Epub 2007 May 24.

PMID:
17544374
3.

Improving ethanol and xylitol fermentation at elevated temperature through substitution of xylose reductase in Kluyveromyces marxianus.

Zhang B, Li L, Zhang J, Gao X, Wang D, Hong J.

J Ind Microbiol Biotechnol. 2013 Apr;40(3-4):305-16. doi: 10.1007/s10295-013-1230-5. Epub 2013 Feb 8.

PMID:
23392758
4.

Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis.

Watanabe S, Abu Saleh A, Pack SP, Annaluru N, Kodaki T, Makino K.

Microbiology. 2007 Sep;153(Pt 9):3044-54.

PMID:
17768247
5.

Reversal of coenzyme specificity and improvement of catalytic efficiency of Pichia stipitis xylose reductase by rational site-directed mutagenesis.

Zeng QK, Du HL, Wang JF, Wei DQ, Wang XN, Li YX, Lin Y.

Biotechnol Lett. 2009 Jul;31(7):1025-9. doi: 10.1007/s10529-009-9980-x. Epub 2009 Mar 29.

PMID:
19330484
6.

A novel strictly NADPH-dependent Pichia stipitis xylose reductase constructed by site-directed mutagenesis.

Khattab SM, Watanabe S, Saimura M, Kodaki T.

Biochem Biophys Res Commun. 2011 Jan 14;404(2):634-7. doi: 10.1016/j.bbrc.2010.12.028. Epub 2010 Dec 10.

PMID:
21146502
7.

[Mutational research on the role of lysine 21 in the Pichia stipitis xylose reductase].

Zeng Q, Du H, Zhai Z, Lin X, Lin Y.

Sheng Wu Gong Cheng Xue Bao. 2008 Jun;24(6):1108-11. Chinese.

PMID:
18808001
8.

The positive effect of the decreased NADPH-preferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae.

Watanabe S, Pack SP, Saleh AA, Annaluru N, Kodaki T, Makino K.

Biosci Biotechnol Biochem. 2007 May;71(5):1365-9. Epub 2007 May 7.

9.

Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae.

Krahulec S, Klimacek M, Nidetzky B.

Biotechnol J. 2009 May;4(5):684-94. doi: 10.1002/biot.200800334.

PMID:
19452479
10.

A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation.

Bera AK, Ho NW, Khan A, Sedlak M.

J Ind Microbiol Biotechnol. 2011 May;38(5):617-26. doi: 10.1007/s10295-010-0806-6. Epub 2010 Aug 17.

PMID:
20714780
12.

The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.

Jeppsson M, Bengtsson O, Franke K, Lee H, Hahn-Hägerdal B, Gorwa-Grauslund MF.

Biotechnol Bioeng. 2006 Mar 5;93(4):665-73.

PMID:
16372361
13.

Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.

Matsushika A, Watanabe S, Kodaki T, Makino K, Inoue H, Murakami K, Takimura O, Sawayama S.

Appl Microbiol Biotechnol. 2008 Nov;81(2):243-55. doi: 10.1007/s00253-008-1649-1. Epub 2008 Aug 27.

PMID:
18751695
14.

Mutational analysis of the role of the conserved lysine-270 in the Pichia stipitis xylose reductase.

Kostrzynska M, Sopher CR, Lee H.

FEMS Microbiol Lett. 1998 Feb 1;159(1):107-12.

15.
16.

Physiological and enzymatic comparison between Pichia stipitis and recombinant Saccharomyces cerevisiae on xylose fermentation.

Guo C, Jiang N.

World J Microbiol Biotechnol. 2013 Mar;29(3):541-7. doi: 10.1007/s11274-012-1208-x. Epub 2012 Nov 20.

PMID:
23180545
17.

Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase.

Khattab SM, Saimura M, Kodaki T.

J Biotechnol. 2013 Jun 10;165(3-4):153-6. doi: 10.1016/j.jbiotec.2013.03.009. Epub 2013 Apr 8.

PMID:
23578809
18.
20.

Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae.

Lee SH, Kodaki T, Park YC, Seo JH.

J Biotechnol. 2012 Apr 30;158(4):184-91. doi: 10.1016/j.jbiotec.2011.06.005. Epub 2011 Jun 15.

PMID:
21699927

Supplemental Content

Support Center