Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Membrane potential measurements of isolated neurons using a voltage-sensitive dye.

Fairless R, Beck A, Kravchenko M, Williams SK, Wissenbach U, Diem R, Cavalié A.

PLoS One. 2013;8(3):e58260. doi: 10.1371/journal.pone.0058260. Epub 2013 Mar 13.

2.

A novel membrane potential-sensitive fluorescent dye improves cell-based assays for ion channels.

Baxter DF, Kirk M, Garcia AF, Raimondi A, Holmqvist MH, Flint KK, Bojanic D, Distefano PS, Curtis R, Xie Y.

J Biomol Screen. 2002 Feb;7(1):79-85.

PMID:
11897058
3.

Use of FLIPR membrane potential dyes for validation of high-throughput screening with the FLIPR and microARCS technologies: identification of ion channel modulators acting on the GABA(A) receptor.

Joesch C, Guevarra E, Parel SP, Bergner A, Zbinden P, Konrad D, Albrecht H.

J Biomol Screen. 2008 Mar;13(3):218-28. doi: 10.1177/1087057108315036. Epub 2008 Feb 12.

PMID:
18270364
4.
5.

Biolistic delivery of voltage-sensitive dyes for fast recording of membrane potential changes in individual neurons in rat brain slices.

Aseyev N, Roshchin M, Ierusalimsky VN, Balaban PM, Nikitin ES.

J Neurosci Methods. 2013 Jan 15;212(1):17-27. doi: 10.1016/j.jneumeth.2012.09.008. Epub 2012 Sep 13.

PMID:
22983172
6.

Submillisecond optical reporting of membrane potential in situ using a neuronal tracer dye.

Bradley J, Luo R, Otis TS, DiGregorio DA.

J Neurosci. 2009 Jul 22;29(29):9197-209. doi: 10.1523/JNEUROSCI.1240-09.2009.

7.
8.
10.

Voltage-operated potassium currents in the somatic membrane of rat dorsal root ganglion neurons: ontogenetic aspects.

Fedulova SA, Vasilyev DV, Veselovsky NS.

Neuroscience. 1998 Jul;85(2):497-508.

PMID:
9622247
11.

Interpretation and optimization of absorbance and fluorescence signals from voltage-sensitive dyes.

Chang PY, Jackson MB.

J Membr Biol. 2003 Nov 15;196(2):105-16.

PMID:
14724747
12.

Isolation and characterization of a persistent potassium current in neostriatal neurons.

Nisenbaum ES, Wilson CJ, Foehring RC, Surmeier DJ.

J Neurophysiol. 1996 Aug;76(2):1180-94.

PMID:
8871229
13.

Acid-sensitive TASK-like K+ conductances contribute to resting membrane potential and to orexin-induced membrane depolarization in rat thalamic paraventricular nucleus neurons.

Doroshenko P, Renaud LP.

Neuroscience. 2009 Feb 18;158(4):1560-70. doi: 10.1016/j.neuroscience.2008.12.008. Epub 2008 Dec 14.

PMID:
19135504
14.
15.

Validation of FLIPR membrane potential dye for high throughput screening of potassium channel modulators.

Whiteaker KL, Gopalakrishnan SM, Groebe D, Shieh CC, Warrior U, Burns DJ, Coghlan MJ, Scott VE, Gopalakrishnan M.

J Biomol Screen. 2001 Oct;6(5):305-12.

PMID:
11689130
16.

Optical recording of membrane potential on isolated spiral ganglion cells of newborn mice using a voltage-sensitive dye.

Matsumoto A, Doi T, Asako M, Yang SM, Yamashita T.

Acta Otolaryngol Suppl. 1998;539:34-9.

PMID:
10095858
17.

[Simultaneously optical recording of membrane potential in population vestibular ganglion neurons].

Yang SM, Jiang SC, Yang WY.

Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2002 Aug;18(3):306-9. Chinese.

PMID:
21180079
18.

In Vivo Observations of Rapid Scattered Light Changes Associated with Neurophysiological Activity.

Rector DM, Yao X, Harper RM, George JS.

In: Frostig RD, editor. In Vivo Optical Imaging of Brain Function. 2nd edition. Boca Raton (FL): CRC Press/Taylor & Francis; 2009. Chapter 5.

19.

Combining Membrane Potential Imaging with Other Optical Techniques.

Jaafari N, Vogt KE, Saggau P, Leslie LM, Zecevic D, Canepari M.

Adv Exp Med Biol. 2015;859:103-25. doi: 10.1007/978-3-319-17641-3_4. Review.

PMID:
26238050
20.

Simultaneous measurement of membrane potential changes in multiple pattern generating neurons using voltage sensitive dye imaging.

Städele C, Andras P, Stein W.

J Neurosci Methods. 2012 Jan 15;203(1):78-88. doi: 10.1016/j.jneumeth.2011.09.015. Epub 2011 Sep 22.

Supplemental Content

Support Center