Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 91

1.

Proteomic analysis indicates massive changes in metabolism prior to the inhibition of growth and photosynthesis of grapevine (Vitis vinifera L.) in response to water deficit.

Cramer GR, Van Sluyter SC, Hopper DW, Pascovici D, Keighley T, Haynes PA.

BMC Plant Biol. 2013 Mar 21;13:49. doi: 10.1186/1471-2229-13-49.

2.

Proteomic analysis reveals differences between Vitis vinifera L. cv. Chardonnay and cv. Cabernet Sauvignon and their responses to water deficit and salinity.

Vincent D, Ergül A, Bohlman MC, Tattersall EA, Tillett RL, Wheatley MD, Woolsey R, Quilici DR, Joets J, Schlauch K, Schooley DA, Cushman JC, Cramer GR.

J Exp Bot. 2007;58(7):1873-92. Epub 2007 Apr 18.

PMID:
17443017
3.

Differential proteomic analysis of grapevine leaves by iTRAQ reveals responses to heat stress and subsequent recovery.

Liu GT, Ma L, Duan W, Wang BC, Li JH, Xu HG, Yan XQ, Yan BF, Li SH, Wang LJ.

BMC Plant Biol. 2014 Apr 28;14:110. doi: 10.1186/1471-2229-14-110.

4.

Proteomic analysis of grapevine (Vitis vinifera L.) leaf changes induced by transition to autotrophy and exposure to high light irradiance.

Nilo-Poyanco R, Olivares D, Orellana A, Hinrichsen P, Pinto M.

J Proteomics. 2013 Oct 8;91:309-30. doi: 10.1016/j.jprot.2013.07.004. Epub 2013 Aug 7.

PMID:
23933133
5.

Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles.

Cramer GR, Ergül A, Grimplet J, Tillett RL, Tattersall EA, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC.

Funct Integr Genomics. 2007 Apr;7(2):111-34. Epub 2006 Nov 29.

PMID:
17136344
6.

Proteomic analysis of the compatible interaction between Vitis vinifera and Plasmopara viticola.

Milli A, Cecconi D, Bortesi L, Persi A, Rinalducci S, Zamboni A, Zoccatelli G, Lovato A, Zolla L, Polverari A.

J Proteomics. 2012 Feb 2;75(4):1284-302. doi: 10.1016/j.jprot.2011.11.006. Epub 2011 Nov 15.

PMID:
22120121
7.

Relative quantification of phosphoproteomic changes in grapevine (Vitis vinifera L.) leaves in response to abscisic acid.

Rattanakan S, George I, Haynes PA, Cramer GR.

Hortic Res. 2016 Jun 22;3:16029. doi: 10.1038/hortres.2016.29. eCollection 2016.

8.

Proteomic analysis of grapevine (Vitis vinifera L.) tissues subjected to herbicide stress.

Castro AJ, Carapito C, Zorn N, Magné C, Leize E, Van Dorsselaer A, Clément C.

J Exp Bot. 2005 Nov;56(421):2783-95. Epub 2005 Oct 10.

PMID:
16216849
9.

Identification of proteins associated with water-deficit tolerance in C4 perennial grass species, Cynodon dactylon×Cynodon transvaalensis and Cynodon dactylon.

Zhao Y, Du H, Wang Z, Huang B.

Physiol Plant. 2011 Jan;141(1):40-55. doi: 10.1111/j.1399-3054.2010.01419.x. Epub 2010 Oct 28.

PMID:
21029106
10.

Characterization of the adaptive response of grapevine (cv. Tempranillo) to UV-B radiation under water deficit conditions.

Martínez-Lüscher J, Morales F, Delrot S, Sánchez-Díaz M, Gomès E, Aguirreolea J, Pascual I.

Plant Sci. 2015 Mar;232:13-22. doi: 10.1016/j.plantsci.2014.12.013. Epub 2014 Dec 23.

PMID:
25617319
12.

Branch development controls leaf area dynamics in grapevine (Vitis vinifera) growing in drying soil.

Lebon E, Pellegrino A, Louarn G, Lecoeur J.

Ann Bot. 2006 Jul;98(1):175-85. Epub 2006 May 5.

13.

Interactive effects of soil water deficit and air vapour pressure deficit on mesophyll conductance to CO2 in Vitis vinifera and Olea europaea.

Perez-Martin A, Flexas J, Ribas-Carbó M, Bota J, Tomás M, Infante JM, Diaz-Espejo A.

J Exp Bot. 2009;60(8):2391-405. doi: 10.1093/jxb/erp145.

PMID:
19457982
14.

Metabolite profiling and network analysis reveal coordinated changes in grapevine water stress response.

Hochberg U, Degu A, Toubiana D, Gendler T, Nikoloski Z, Rachmilevitch S, Fait A.

BMC Plant Biol. 2013 Nov 20;13:184. doi: 10.1186/1471-2229-13-184.

15.

Transcript abundance profiles reveal larger and more complex responses of grapevine to chilling compared to osmotic and salinity stress.

Tattersall EA, Grimplet J, DeLuc L, Wheatley MD, Vincent D, Osborne C, Ergül A, Lomen E, Blank RR, Schlauch KA, Cushman JC, Cramer GR.

Funct Integr Genomics. 2007 Oct;7(4):317-33. Epub 2007 Jun 20.

PMID:
17578611
16.

Changes in protein abundance during powdery mildew infection of leaf tissues of Cabernet Sauvignon grapevine (Vitis vinifera L.).

Marsh E, Alvarez S, Hicks LM, Barbazuk WB, Qiu W, Kovacs L, Schachtman D.

Proteomics. 2010 May;10(10):2057-64. doi: 10.1002/pmic.200900712.

PMID:
20232356
17.

Tissue-specific mRNA expression profiling in grape berry tissues.

Grimplet J, Deluc LG, Tillett RL, Wheatley MD, Schlauch KA, Cramer GR, Cushman JC.

BMC Genomics. 2007 Jun 21;8:187.

18.

Abscisic acid transcriptomic signaling varies with grapevine organ.

Rattanakon S, Ghan R, Gambetta GA, Deluc LG, Schlauch KA, Cramer GR.

BMC Plant Biol. 2016 Mar 22;16:72. doi: 10.1186/s12870-016-0763-y.

19.

Contrasting physiological effects of partial root zone drying in field-grown grapevine (Vitis vinifera L. cv. Monastrell) according to total soil water availability.

Romero P, Dodd IC, Martinez-Cutillas A.

J Exp Bot. 2012 Jun;63(11):4071-83. doi: 10.1093/jxb/ers088. Epub 2012 Mar 26.

20.

Cultivar specific metabolic changes in grapevines berry skins in relation to deficit irrigation and hydraulic behavior.

Hochberg U, Degu A, Cramer GR, Rachmilevitch S, Fait A.

Plant Physiol Biochem. 2015 Mar;88:42-52. doi: 10.1016/j.plaphy.2015.01.006. Epub 2015 Jan 23.

PMID:
25635762

Supplemental Content

Support Center