Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 74

1.

[Dependence of the gradient between arterial and end-tidal Pco2 on the fraction of inspired oxygen].

Yamauchi H, Ito S, Sobue K.

Masui. 2012 Nov;61 Suppl:S159-64. Japanese. No abstract available.

PMID:
23513531
2.
3.

Can pulse oximetry and end-tidal capnography reflect arterial oxygenation and carbon dioxide elimination during laparoscopic cholecystectomy?

Baraka A, Jabbour S, Hammoud R, Aouad M, Najjar F, Khoury G, Sibai A.

Surg Laparosc Endosc. 1994 Oct;4(5):353-6.

PMID:
8000633
4.

The effect of increased apparatus dead space and tidal volumes on carbon dioxide elimination and oxygen saturations in a low-flow anesthesia system.

Enekvist BJ, Luttropp HH, Johansson A.

J Clin Anesth. 2008 May;20(3):170-4. doi: 10.1016/j.jclinane.2007.09.013.

PMID:
18502358
5.
7.
8.
9.

Measurement of inspired and expired oxygen and carbon dioxide.

Burton GW.

Br J Anaesth. 1969 Sep;41(9):723-30. Review. No abstract available.

PMID:
4901990
10.

Intraoperative end-tidal carbon dioxide levels and derived calculations correlated with outcome in trauma patients.

Wilson RF, Tyburski JG, Kubinec SM, Warsow KM, Larky HC, Wilson SR, Schermerhorn T.

J Trauma. 1996 Oct;41(4):606-11.

PMID:
8858017
11.

Estimating alveolar dead space from the arterial to end-tidal CO(2) gradient: a modeling analysis.

Hardman JG, Aitkenhead AR.

Anesth Analg. 2003 Dec;97(6):1846-51.

PMID:
14633572
12.

Dependence of the gradient between arterial and end-tidal P(CO(2)) on the fraction of inspired oxygen.

Yamauchi H, Ito S, Sasano H, Azami T, Fisher J, Sobue K.

Br J Anaesth. 2011 Oct;107(4):631-5. doi: 10.1093/bja/aer171. Epub 2011 Jun 23.

PMID:
21700613
13.

Predicting dead space ventilation in critically ill patients using clinically available data.

Frankenfield DC, Alam S, Bekteshi E, Vender RL.

Crit Care Med. 2010 Jan;38(1):288-91. doi: 10.1097/CCM.0b013e3181b42e13.

PMID:
19789453
14.

Noninvasive measurement of mean alveolar carbon dioxide tension and Bohr's dead space during tidal breathing.

Koulouris NG, Latsi P, Dimitroulis J, Jordanoglou B, Gaga M, Jordanoglou J.

Eur Respir J. 2001 Jun;17(6):1167-74.

16.

Factors affecting the relationship between arterial and end-tidal carbon dioxide pressures in the anaesthetised horse.

Rainger JE, Dart CM, Perkins NR.

Aust Vet J. 2010 Jan;88(1-2):13-9. doi: 10.1111/j.1751-0813.2009.00535.x.

PMID:
20148820
17.

Failure of large tidal volumes to improve oxygen availability during anaesthesia.

Askitopoulou H, Chakrabarti MK, Morgan M, Sykes MK.

Acta Anaesthesiol Scand. 1984 Jun;28(3):348-50.

PMID:
6430011
18.

Prediction of the physiological dead-space in resting normal subjects.

Harris EA, Hunter ME, Seelye ER, Vedder M, Whitlock RM.

Clin Sci Mol Med. 1973 Sep;45(3):375-86. No abstract available.

PMID:
4785138
19.

The influence of inspired oxygen fraction and end-tidal carbon dioxide on post-cross-clamp cerebral oxygenation during carotid endarterectomy under general anesthesia.

Picton P, Chambers J, Shanks A, Dorje P.

Anesth Analg. 2010 Feb 1;110(2):581-7. doi: 10.1213/ANE.0b013e3181c5f160. Epub 2009 Dec 2.

PMID:
19955500
20.

Soda lime temperatures during low-flow sevoflurane anaesthesia and differences in dead-space.

Luttropp HH, Johansson A.

Acta Anaesthesiol Scand. 2002 May;46(5):500-5.

PMID:
12027842

Supplemental Content

Support Center