Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 139

1.

Mastoid obliteration using three-dimensional composite scaffolds consisting of polycaprolactone/β-tricalcium phosphate/collagen nanofibers: an in vitro and in vivo study.

Jang CH, Cho YB, Yeo MG, Kim GH.

Macromol Biosci. 2013 May;13(5):660-8. doi: 10.1002/mabi.201200393. Epub 2013 Feb 20.

PMID:
23512910
3.

Mastoid obliteration using 3D PCL scaffold in combination with alginate and rhBMP-2.

Jang CH, Kim MS, Cho YB, Jang YS, Kim GH.

Int J Biol Macromol. 2013 Nov;62:614-22. doi: 10.1016/j.ijbiomac.2013.10.011. Epub 2013 Oct 18.

PMID:
24145300
4.

Regeneration of mastoid air cells using polycaprolactone/β-tricalcium phosphate biocomposites: an experimental study.

Jang CH, Cho YB, Kim JS, Lee HJ, Kim GH.

Laryngoscope. 2012 Mar;122(3):660-4. doi: 10.1002/lary.22503. Epub 2012 Jan 17.

PMID:
22252724
5.

Lateral ridge augmentation using a PCL-TCP scaffold in a clinically relevant but challenging micropig model.

Yeo A, Cheok C, Teoh SH, Zhang ZY, Buser D, Bosshardt DD.

Clin Oral Implants Res. 2012 Dec;23(12):1322-32. doi: 10.1111/j.1600-0501.2011.02366.x. Epub 2011 Dec 6.

PMID:
22145939
6.

Three-dimensionally printed polycaprolactone and β-tricalcium phosphate scaffolds for bone tissue engineering: an in vitro study.

Sharaf B, Faris CB, Abukawa H, Susarla SM, Vacanti JP, Kaban LB, Troulis MJ.

J Oral Maxillofac Surg. 2012 Mar;70(3):647-56. doi: 10.1016/j.joms.2011.07.029. Epub 2011 Nov 10.

PMID:
22079064
7.

Effect of umbilical cord serum coated 3D PCL/alginate scaffold for mastoid obliteration.

Jang CH, Cho YB, Choi CH, Jang YS, Jung WK, Lee H, Kim GH.

Int J Pediatr Otorhinolaryngol. 2014 Jul;78(7):1061-5. doi: 10.1016/j.ijporl.2014.04.004. Epub 2014 Apr 12.

PMID:
24788192
8.

The effect of calcium phosphate composite scaffolds on the osteogenic differentiation of rabbit dental pulp stem cells.

Ling LE, Feng L, Liu HC, Wang DS, Shi ZP, Wang JC, Luo W, Lv Y.

J Biomed Mater Res A. 2015 May;103(5):1732-45. doi: 10.1002/jbm.a.35303. Epub 2014 Sep 11.

PMID:
25131439
9.

A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering.

Cao H, Kuboyama N.

Bone. 2010 Feb;46(2):386-95. doi: 10.1016/j.bone.2009.09.031. Epub 2009 Sep 30.

PMID:
19800045
10.

Surface modification of PCL-TCP scaffolds improve interfacial mechanical interlock and enhance early bone formation: an in vitro and in vivo characterization.

Yeo A, Wong WJ, Khoo HH, Teoh SH.

J Biomed Mater Res A. 2010 Jan;92(1):311-21. doi: 10.1002/jbm.a.32366.

PMID:
19189386
11.

Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering.

Arafat MT, Lam CX, Ekaputra AK, Wong SY, Li X, Gibson I.

Acta Biomater. 2011 Feb;7(2):809-20. doi: 10.1016/j.actbio.2010.09.010. Epub 2010 Sep 16.

PMID:
20849985
12.

Biocompatibility and biodegradation studies of PCL/β-TCP bone tissue scaffold fabricated by structural porogen method.

Lu L, Zhang Q, Wootton D, Chiou R, Li D, Lu B, Lelkes P, Zhou J.

J Mater Sci Mater Med. 2012 Sep;23(9):2217-26. doi: 10.1007/s10856-012-4695-2. Epub 2012 Jun 6.

PMID:
22669285
13.

Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold.

Baylan N, Bhat S, Ditto M, Lawrence JG, Lecka-Czernik B, Yildirim-Ayan E.

Biomed Mater. 2013 Aug;8(4):045011. doi: 10.1088/1748-6041/8/4/045011. Epub 2013 Jun 27.

PMID:
23804651
14.

Differences between in vitro viability and differentiation and in vivo bone-forming efficacy of human mesenchymal stem cells cultured on PCL-TCP scaffolds.

Rai B, Lin JL, Lim ZX, Guldberg RE, Hutmacher DW, Cool SM.

Biomaterials. 2010 Nov;31(31):7960-70. doi: 10.1016/j.biomaterials.2010.07.001. Epub 2010 Aug 4.

PMID:
20688388
15.

Effect of piperacillin-tazobactam coated β-tricalcium phosphate for mastoid obliteration in otitis media.

Jang CH, Cho YB, Yang HC, Kim JS, Choi CH, Jang SJ, Park H, Kim GH.

Int J Pediatr Otorhinolaryngol. 2011 May;75(5):631-4. doi: 10.1016/j.ijporl.2011.01.039. Epub 2011 Mar 8.

PMID:
21388691
16.

Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I.

Liao HT, Lee MY, Tsai WW, Wang HC, Lu WC.

J Tissue Eng Regen Med. 2016 Oct;10(10):E337-E353. doi: 10.1002/term.1811. Epub 2013 Aug 16.

PMID:
23955935
17.

Effects of polycaprolactone-tricalcium phosphate, recombinant human bone morphogenetic protein-2 and dog mesenchymal stem cells on bone formation: pilot study in dogs.

Kim SJ, Kim MR, Oh JS, Han I, Shin SW.

Yonsei Med J. 2009 Dec 31;50(6):825-31. doi: 10.3349/ymj.2009.50.6.825. Epub 2009 Dec 18.

18.

Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering.

Gautam S, Chou CF, Dinda AK, Potdar PD, Mishra NC.

Mater Sci Eng C Mater Biol Appl. 2014 Jan 1;34:402-9. doi: 10.1016/j.msec.2013.09.043. Epub 2013 Oct 5.

PMID:
24268275
19.

In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds.

Poh PSP, Hutmacher DW, Holzapfel BM, Solanki AK, Stevens MM, Woodruff MA.

Acta Biomater. 2016 Jan;30:319-333. doi: 10.1016/j.actbio.2015.11.012. Epub 2015 Nov 10.

PMID:
26563472
20.

Differentiation of Wharton's Jelly-Derived Mesenchymal Stem Cells into Motor Neuron-Like Cells on Three-Dimensional Collagen-Grafted Nanofibers.

Bagher Z, Azami M, Ebrahimi-Barough S, Mirzadeh H, Solouk A, Soleimani M, Ai J, Nourani MR, Joghataei MT.

Mol Neurobiol. 2016 May;53(4):2397-408. doi: 10.1007/s12035-015-9199-x. Epub 2015 May 24.

PMID:
26001761

Supplemental Content

Support Center