Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 135

1.

Aerobic fitness and intra-individual variability of neurocognition in preadolescent children.

Moore RD, Wu CT, Pontifex MB, O'Leary KC, Scudder MR, Raine LB, Johnson CR, Hillman CH.

Brain Cogn. 2013 Jun;82(1):43-57. doi: 10.1016/j.bandc.2013.02.006. Epub 2013 Mar 16.

2.

Cardiorespiratory fitness and the flexible modulation of cognitive control in preadolescent children.

Pontifex MB, Raine LB, Johnson CR, Chaddock L, Voss MW, Cohen NJ, Kramer AF, Hillman CH.

J Cogn Neurosci. 2011 Jun;23(6):1332-45. doi: 10.1162/jocn.2010.21528. Epub 2010 Jun 3.

PMID:
20521857
3.

Aerobic fitness and cognitive development: Event-related brain potential and task performance indices of executive control in preadolescent children.

Hillman CH, Buck SM, Themanson JR, Pontifex MB, Castelli DM.

Dev Psychol. 2009 Jan;45(1):114-29. doi: 10.1037/a0014437.

PMID:
19209995
4.

Acute exercise facilitates brain function and cognition in children who need it most: an ERP study of individual differences in inhibitory control capacity.

Drollette ES, Scudder MR, Raine LB, Moore RD, Saliba BJ, Pontifex MB, Hillman CH.

Dev Cogn Neurosci. 2014 Jan;7:53-64. doi: 10.1016/j.dcn.2013.11.001. Epub 2013 Nov 16.

5.

Aerobic fitness and response variability in preadolescent children performing a cognitive control task.

Wu CT, Pontifex MB, Raine LB, Chaddock L, Voss MW, Kramer AF, Hillman CH.

Neuropsychology. 2011 May;25(3):333-41. doi: 10.1037/a0022167.

6.

The impacts of coordinative exercise on executive function in kindergarten children: an ERP study.

Chang YK, Tsai YJ, Chen TT, Hung TM.

Exp Brain Res. 2013 Mar;225(2):187-96. doi: 10.1007/s00221-012-3360-9. Epub 2012 Dec 13. Erratum in: Exp Brain Res. 2013 Jul;228(2):255.

PMID:
23239198
7.

Impact of acute aerobic exercise and cardiorespiratory fitness on visuospatial attention performance and serum BDNF levels.

Tsai CL, Chen FC, Pan CY, Wang CH, Huang TH, Chen TC.

Psychoneuroendocrinology. 2014 Mar;41:121-31. doi: 10.1016/j.psyneuen.2013.12.014. Epub 2013 Dec 27.

PMID:
24495613
8.

The relation of aerobic fitness to neuroelectric indices of cognitive and motor task preparation.

Kamijo K, O'Leary KC, Pontifex MB, Themanson JR, Hillman CH.

Psychophysiology. 2010 Sep;47(5):814-21. doi: 10.1111/j.1469-8986.2010.00992.x. Epub 2010 Mar 23.

9.

Aerobic fitness and the attentional blink in preadolescent children.

Wu CT, Hillman CH.

Neuropsychology. 2013 Nov;27(6):642-53. doi: 10.1037/a0034025. Epub 2013 Sep 23.

PMID:
24059445
10.

Tracking the relationship between children's aerobic fitness and cognitive control.

Scudder MR, Drollette ES, Szabo-Reed AN, Lambourne K, Fenton CI, Donnelly JE, Hillman CH.

Health Psychol. 2016 Sep;35(9):967-78. doi: 10.1037/hea0000343. Epub 2016 Apr 18.

11.

Aerobic Fitness and Intraindividual Reaction Time Variability in Middle and Old Age.

Bauermeister S, Bunce D.

J Gerontol B Psychol Sci Soc Sci. 2016 May;71(3):431-8. doi: 10.1093/geronb/gbu152. Epub 2014 Oct 28.

PMID:
25352519
12.

The Association of Childhood Fitness to Proactive and Reactive Action Monitoring.

Kamijo K, Bae S, Masaki H.

PLoS One. 2016 Mar 3;11(3):e0150691. doi: 10.1371/journal.pone.0150691. eCollection 2016.

13.

Aerobic Fitness Is Associated With Cognitive Control Strategy in Preadolescent Children.

Kao SC, Drollette ES, Scudder MR, Raine LB, Westfall DR, Pontifex MB, Hillman CH.

J Mot Behav. 2017 Mar-Apr;49(2):150-162. doi: 10.1080/00222895.2016.1161594. Epub 2016 Aug 11.

PMID:
27715503
14.

The interactive effect of exercise intensity and task difficulty on human cognitive processing.

Kamijo K, Nishihira Y, Higashiura T, Kuroiwa K.

Int J Psychophysiol. 2007 Aug;65(2):114-21. Epub 2007 Apr 6.

PMID:
17482699
15.

The association between aerobic fitness and congruency sequence effects in preadolescent children.

Westfall DR, Kao SC, Scudder MR, Pontifex MB, Hillman CH.

Brain Cogn. 2017 Apr;113:85-92. doi: 10.1016/j.bandc.2016.12.005. Epub 2017 Feb 2.

PMID:
28160688
16.

Childhood aerobic fitness predicts cognitive performance one year later.

Chaddock L, Hillman CH, Pontifex MB, Johnson CR, Raine LB, Kramer AF.

J Sports Sci. 2012;30(5):421-30. doi: 10.1080/02640414.2011.647706. Epub 2012 Jan 19.

PMID:
22260155
17.

Cardiorespiratory fitness and acute aerobic exercise effects on neuroelectric and behavioral measures of action monitoring.

Themanson JR, Hillman CH.

Neuroscience. 2006 Aug 25;141(2):757-67. Epub 2006 May 18.

PMID:
16713115
18.

Aerobic fitness is associated with greater efficiency of the network underlying cognitive control in preadolescent children.

Voss MW, Chaddock L, Kim JS, Vanpatter M, Pontifex MB, Raine LB, Cohen NJ, Hillman CH, Kramer AF.

Neuroscience. 2011 Dec 29;199:166-76. doi: 10.1016/j.neuroscience.2011.10.009. Epub 2011 Oct 14.

19.

Basal ganglia volume is associated with aerobic fitness in preadolescent children.

Chaddock L, Erickson KI, Prakash RS, VanPatter M, Voss MW, Pontifex MB, Raine LB, Hillman CH, Kramer AF.

Dev Neurosci. 2010 Aug;32(3):249-56. doi: 10.1159/000316648. Epub 2010 Aug 6.

20.

The negative association of childhood obesity to cognitive control of action monitoring.

Kamijo K, Pontifex MB, Khan NA, Raine LB, Scudder MR, Drollette ES, Evans EM, Castelli DM, Hillman CH.

Cereb Cortex. 2014 Mar;24(3):654-62. doi: 10.1093/cercor/bhs349. Epub 2012 Nov 11.

Supplemental Content

Support Center