Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 115


Effects of strigolactone-biosynthesis inhibitor TIS108 on Arabidopsis.

Ito S, Umehara M, Hanada A, Yamaguchi S, Asami T.

Plant Signal Behav. 2013 May;8(5):e24193. doi: 10.4161/psb.24193.


Effects of triazole derivatives on strigolactone levels and growth retardation in rice.

Ito S, Umehara M, Hanada A, Kitahata N, Hayase H, Yamaguchi S, Asami T.

PLoS One. 2011;6(7):e21723. doi: 10.1371/journal.pone.0021723.


Strigolactones are involved in root response to low phosphate conditions in Arabidopsis.

Mayzlish-Gati E, De-Cuyper C, Goormachtig S, Beeckman T, Vuylsteke M, Brewer PB, Beveridge CA, Yermiyahu U, Kaplan Y, Enzer Y, Wininger S, Resnick N, Cohen M, Kapulnik Y, Koltai H.

Plant Physiol. 2012 Nov;160(3):1329-41. doi: 10.1104/pp.112.202358.


Feedback-regulation of strigolactone biosynthetic genes and strigolactone-regulated genes in Arabidopsis.

Mashiguchi K, Sasaki E, Shimada Y, Nagae M, Ueno K, Nakano T, Yoneyama K, Suzuki Y, Asami T.

Biosci Biotechnol Biochem. 2009 Nov;73(11):2460-5.


The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones.

Waters MT, Brewer PB, Bussell JD, Smith SM, Beveridge CA.

Plant Physiol. 2012 Jul;159(3):1073-85. doi: 10.1104/pp.112.196253.


Effects of strigolactone signaling on Arabidopsis growth under nitrogen deficient stress condition.

Ito S, Ito K, Abeta N, Takahashi R, Sasaki Y, Yajima S.

Plant Signal Behav. 2016;11(1):e1126031. doi: 10.1080/15592324.2015.1126031.


A new role for glutathione in the regulation of root architecture linked to strigolactones.

Marquez-Garcia B, Njo M, Beeckman T, Goormachtig S, Foyer CH.

Plant Cell Environ. 2014 Feb;37(2):488-98. doi: 10.1111/pce.12172.


Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis.

Kapulnik Y, Delaux PM, Resnick N, Mayzlish-Gati E, Wininger S, Bhattacharya C, Séjalon-Delmas N, Combier JP, Bécard G, Belausov E, Beeckman T, Dor E, Hershenhorn J, Koltai H.

Planta. 2011 Jan;233(1):209-16. doi: 10.1007/s00425-010-1310-y.


Strigolactone analog GR24 triggers changes in PIN2 polarity, vesicle trafficking and actin filament architecture.

Pandya-Kumar N, Shema R, Kumar M, Mayzlish-Gati E, Levy D, Zemach H, Belausov E, Wininger S, Abu-Abied M, Kapulnik Y, Koltai H.

New Phytol. 2014 Jun;202(4):1184-96. doi: 10.1111/nph.12744.


Diverse roles of strigolactone signaling in maize architecture and the uncoupling of a branching-specific subnetwork.

Guan JC, Koch KE, Suzuki M, Wu S, Latshaw S, Petruff T, Goulet C, Klee HJ, McCarty DR.

Plant Physiol. 2012 Nov;160(3):1303-17. doi: 10.1104/pp.112.204503.


A strigolactone signal is required for adventitious root formation in rice.

Sun H, Tao J, Hou M, Huang S, Chen S, Liang Z, Xie T, Wei Y, Xie X, Yoneyama K, Xu G, Zhang Y.

Ann Bot. 2015 Jun;115(7):1155-62. doi: 10.1093/aob/mcv052.


Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis.

Kapulnik Y, Resnick N, Mayzlish-Gati E, Kaplan Y, Wininger S, Hershenhorn J, Koltai H.

J Exp Bot. 2011 May;62(8):2915-24. doi: 10.1093/jxb/erq464.


A new lead chemical for strigolactone biosynthesis inhibitors.

Ito S, Kitahata N, Umehara M, Hanada A, Kato A, Ueno K, Mashiguchi K, Kyozuka J, Yoneyama K, Yamaguchi S, Asami T.

Plant Cell Physiol. 2010 Jul;51(7):1143-50. doi: 10.1093/pcp/pcq077.


The tillering phenotype of the rice plastid terminal oxidase (PTOX) loss-of-function mutant is associated with strigolactone deficiency.

Tamiru M, Abe A, Utsushi H, Yoshida K, Takagi H, Fujisaki K, Undan JR, Rakshit S, Takaichi S, Jikumaru Y, Yokota T, Terry MJ, Terauchi R.

New Phytol. 2014 Apr;202(1):116-31. doi: 10.1111/nph.12630.


Strigolactone signaling in the endodermis is sufficient to restore root responses and involves SHORT HYPOCOTYL 2 (SHY2) activity.

Koren D, Resnick N, Mayzlish Gati E, Belausov E, Weininger S, Kapulnik Y, Koltai H.

New Phytol. 2013 May;198(3):866-74. doi: 10.1111/nph.12189.


Arabidopsis response to low-phosphate conditions includes active changes in actin filaments and PIN2 polarization and is dependent on strigolactone signalling.

Kumar M, Pandya-Kumar N, Dam A, Haor H, Mayzlish-Gati E, Belausov E, Wininger S, Abu-Abied M, McErlean CS, Bromhead LJ, Prandi C, Kapulnik Y, Koltai H.

J Exp Bot. 2015 Mar;66(5):1499-510. doi: 10.1093/jxb/eru513.


A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching.

Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB, Reinhardt D, Bours R, Bouwmeester HJ, Martinoia E.

Nature. 2012 Mar 7;483(7389):341-4. doi: 10.1038/nature10873.


Positive regulatory role of strigolactone in plant responses to drought and salt stress.

Ha CV, Leyva-González MA, Osakabe Y, Tran UT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Dong NV, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L, Tran LS.

Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):851-6. doi: 10.1073/pnas.1322135111.


DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone.

Hamiaux C, Drummond RS, Janssen BJ, Ledger SE, Cooney JM, Newcomb RD, Snowden KC.

Curr Biol. 2012 Nov 6;22(21):2032-6. doi: 10.1016/j.cub.2012.08.007.

Items per page

Supplemental Content

Support Center