Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 585

1.

Diffusion tensor imaging and magnetic resonance spectroscopy assessment of cancellous bone quality in femoral neck of healthy, osteopenic and osteoporotic subjects at 3T: Preliminary experience.

Manenti G, Capuani S, Fanucci E, Assako EP, Masala S, Sorge R, Iundusi R, Tarantino U, Simonetti G.

Bone. 2013 Jul;55(1):7-15. doi: 10.1016/j.bone.2013.03.004. Epub 2013 Mar 16.

PMID:
23507402
2.

Osteoporosis detection by 3T diffusion tensor imaging and MRI spectroscopy in women older than 60 years.

Manenti G, Capuani S, Fusco A, Fanucci E, Tarantino U, Simonetti G.

Aging Clin Exp Res. 2013 Oct;25 Suppl 1:S31-4. doi: 10.1007/s40520-013-0091-0. Epub 2013 Sep 18.

PMID:
24046053
3.

Potential diagnostic role of the MRI-derived internal magnetic field gradient in calcaneus cancellous bone for evaluating postmenopausal osteoporosis at 3T.

Rebuzzi M, Vinicola V, Taggi F, Sabatini U, Wehrli FW, Capuani S.

Bone. 2013 Nov;57(1):155-63. doi: 10.1016/j.bone.2013.07.027. Epub 2013 Jul 27.

PMID:
23899635
4.

Bone Marrow Lipid Profiles from Peripheral Skeleton as Potential Biomarkers for Osteoporosis: A 1H-MR Spectroscopy Study.

Di Pietro G, Capuani S, Manenti G, Vinicola V, Fusco A, Baldi J, Scimeca M, Hagberg G, Bozzali M, Simonetti G, Tarantino U.

Acad Radiol. 2016 Mar;23(3):273-83. doi: 10.1016/j.acra.2015.11.009. Epub 2016 Jan 7.

PMID:
26774740
5.

Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy.

Griffith JF, Yeung DK, Antonio GE, Lee FK, Hong AW, Wong SY, Lau EM, Leung PC.

Radiology. 2005 Sep;236(3):945-51. Epub 2005 Jul 29.

PMID:
16055699
6.

Comparisons of noninvasive bone mineral measurements in assessing age-related loss, fracture discrimination, and diagnostic classification.

Grampp S, Genant HK, Mathur A, Lang P, Jergas M, Takada M, Glüer CC, Lu Y, Chavez M.

J Bone Miner Res. 1997 May;12(5):697-711.

8.

A comparative study of computed digital absorptiometry and conventional dual-energy X-ray absorptiometry in postmenopausal women.

Fiter J, Nolla JM, Gómez-Vaquero C, Martínez-Aguilá D, Valverde J, Roig-Escofet D.

Osteoporos Int. 2001;12(7):565-9.

PMID:
11527054
9.

Assessment of volumetric bone mineral density of the femoral neck in postmenopausal women with and without vertebral fractures using quantitative multi-slice CT.

Wu SY, Jia HH, Hans D, Lan J, Wang LY, Li JX, Cai YZ.

J Zhejiang Univ Sci B. 2009 Jul;10(7):499-504. doi: 10.1631/jzus.B0820409.

10.

Diagnosis of low bone mass in CKD-5D patients.

Blomquist GA, Davenport DL, Mawad HW, Monier-Faugere MC, Malluche HH.

Clin Nephrol. 2016 Feb;85(2):77-83. doi: 10.5414/CN108708.

11.

Utilization of DXA Bone Mineral Densitometry in Ontario: An Evidence-Based Analysis.

Health Quality Ontario.

Ont Health Technol Assess Ser. 2006;6(20):1-180. Epub 2006 Nov 1.

12.

Performance of quantitative ultrasound in the discrimination of prevalent osteoporotic fractures in a bone metabolic unit.

López-Rodríguez F, Mezquita-Raya P, de Dios Luna J, Escobar-Jiménez F, Muñoz-Torres M.

Bone. 2003 May;32(5):571-8.

PMID:
12753874
13.

Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study.

Yeung DK, Griffith JF, Antonio GE, Lee FK, Woo J, Leung PC.

J Magn Reson Imaging. 2005 Aug;22(2):279-85.

PMID:
16028245
14.

BMD T-score discriminates trochanteric fractures from unfractured controls, whereas geometry discriminates cervical fracture cases from unfractured controls of similar BMD.

Pulkkinen P, Partanen J, Jalovaara P, Jämsä T.

Osteoporos Int. 2010 Jul;21(7):1269-76. doi: 10.1007/s00198-009-1070-3. Epub 2009 Sep 26.

PMID:
19784537
15.

Use of routine thoracic and abdominal computed tomography scans for assessing bone mineral density and detecting osteoporosis.

Marinova M, Edon B, Wolter K, Katsimbari B, Schild HH, Strunk HM.

Curr Med Res Opin. 2015;31(10):1871-81. doi: 10.1185/03007995.2015.1074892. Epub 2015 Aug 26.

PMID:
26308674
16.

Bone mineral density measurements of the proximal femur from routine contrast-enhanced MDCT data sets correlate with dual-energy X-ray absorptiometry.

Gruber M, Bauer JS, Dobritz M, Beer AJ, Wolf P, Woertler K, Rummeny EJ, Baum T.

Eur Radiol. 2013 Feb;23(2):505-12. doi: 10.1007/s00330-012-2629-5. Epub 2012 Aug 30.

PMID:
22932742
17.

Interest of a prescreening questionnaire to reduce the cost of bone densitometry.

Ben Sedrine W, Broers P, Devogelaer JP, Depresseux G, Kaufman JM, Goemaere S, Reginster JY.

Osteoporos Int. 2002 May;13(5):434-42.

PMID:
12086356
18.

Correlation of proximal femoral bone geometry from plain radiographs and dual energy X-ray absorptiometry in elderly patients.

Vaseenon T, Chaimuang C, Phanphaisarn A, Namwongprom S, Luevitoonvechkij S, Rojanasthien S.

J Med Assoc Thai. 2015 Jan;98(1):39-44.

PMID:
25775730
19.

[Bone mineral density in postmenopausal women with proximal femoral fractures--comparative study between quantitative ultrasonometry and gold standard DXA].

Schnabel M, Eser G, Ziller V, Mann D, Mann E, Hadji P.

Zentralbl Chir. 2005 Oct;130(5):469-75. German.

PMID:
16220445
20.

Serum chitotriosidase in postmenopausal women with severe osteoporosis.

Musumeci M, Palermo A, D'Onofrio L, Vadalà G, Greto V, Di Stasio E, Maddaloni E, Di Rosa M, Tibullo D, Angeletti S, Napoli N, Denaro V, Manfrini S.

Osteoporos Int. 2016 Feb;27(2):711-6. doi: 10.1007/s00198-015-3254-3. Epub 2015 Aug 5. Erratum in: Osteoporos Int. 2016 Feb;27(2):717. Silvia, A [Corrected to Angeletti, S].

PMID:
26243359

Supplemental Content

Support Center