Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 154

1.

Semiautomated quantification of β-zone parapapillary atrophy using blue light fundus autofluorescence.

Mansouri K, Tung JD, Medeiros FA, Tafreshi A, Dorairaj S, Zangwill L, He F, Jain S, Weinreb RN.

Acta Ophthalmol. 2013 Aug;91(5):e379-385. doi: 10.1111/aos.12057. Epub 2013 Mar 18.

2.

[In-vivo measurement of autofluorescence in the parapapillary atrophic zone of optic discs with and without glaucomatous atrophy].

Viestenz A, Mardin CY, Langenbucher A, Naumann GO.

Klin Monbl Augenheilkd. 2003 Aug;220(8):545-50. German.

PMID:
12953157
3.

A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy.

Sayegh RG, Simader C, Scheschy U, Montuoro A, Kiss C, Sacu S, Kreil DP, Prünte C, Schmidt-Erfurth U.

Ophthalmology. 2011 Sep;118(9):1844-51. doi: 10.1016/j.ophtha.2011.01.043. Epub 2011 Apr 15.

PMID:
21496928
4.

Agreement of measurement of parapapillary atrophy with confocal scanning laser ophthalmoscopy and planimetry of photographs.

Kono Y, Jonas JB, Zangwill L, Berry CC, Weinreb RN.

J Glaucoma. 1999 Apr;8(2):105-10.

PMID:
10209726
5.

Longitudinal evaluation of optic disc measurement variability with optical coherence tomography and confocal scanning laser ophthalmoscopy.

Lin D, Leung CK, Weinreb RN, Cheung CY, Li H, Lam DS.

J Glaucoma. 2009 Feb;18(2):101-6. doi: 10.1097/IJG.0b013e318179f879.

PMID:
19225344
6.

Comparison of optic nerve head measurements obtained by optical coherence tomography and confocal scanning laser ophthalmoscopy.

Schuman JS, Wollstein G, Farra T, Hertzmark E, Aydin A, Fujimoto JG, Paunescu LA.

Am J Ophthalmol. 2003 Apr;135(4):504-12. Erratum in: Am J Ophthalmol. 2003 Aug;136(2):following 403.

PMID:
12654368
7.

Comparing the detection and agreement of parapapillary atrophy progression using digital optic disk photographs and alternation flicker.

VanderBeek BL, Smith SD, Radcliffe NM.

Graefes Arch Clin Exp Ophthalmol. 2010 Sep;248(9):1313-7. doi: 10.1007/s00417-010-1376-z.

PMID:
20393740
8.

Evaluation of autofluorescence imaging with the scanning laser ophthalmoscope and the fundus camera in age-related geographic atrophy.

Schmitz-Valckenberg S, Fleckenstein M, Göbel AP, Sehmi K, Fitzke FW, Holz FG, Tufail A.

Am J Ophthalmol. 2008 Aug;146(2):183-92. doi: 10.1016/j.ajo.2008.04.006. Epub 2008 Jun 2.

PMID:
18514607
9.

Longitudinal changes in peripapillary atrophy in the ocular hypertension treatment study: a case-control assessment.

Savatovsky E, Mwanza JC, Budenz DL, Feuer WJ, Vandenbroucke R, Schiffman JC, Anderson DR; Ocular Hypertension Treatment Study.

Ophthalmology. 2015 Jan;122(1):79-86. doi: 10.1016/j.ophtha.2014.07.033. Epub 2014 Sep 7.

10.

Measurement of autofluorescence in the parapapillary atrophic zone in patients with ocular hypertension.

Laemmer R, Horn FK, Viestenz A, Link B, Juenemann AG, Mardin CY.

Graefes Arch Clin Exp Ophthalmol. 2007 Jan;245(1):51-8. Epub 2006 Aug 1.

PMID:
16896917
11.

Comparison of retinal nerve fiber layer imaging by spectral domain optical coherence tomography and scanning laser ophthalmoscopy.

Ye C, To E, Weinreb RN, Yu M, Liu S, Lam DS, Leung CK.

Ophthalmology. 2011 Nov;118(11):2196-202. doi: 10.1016/j.ophtha.2011.03.035. Epub 2011 Jul 16.

PMID:
21762989
12.

COMPARISON OF MANUAL AND SEMIAUTOMATED FUNDUS AUTOFLUORESCENCE ANALYSIS OF MACULAR ATROPHY IN STARGARDT DISEASE PHENOTYPE.

Kuehlewein L, Hariri AH, Ho A, Dustin L, Wolfson Y, Strauss RW, Scholl HP, Sadda SR.

Retina. 2016 Jun;36(6):1216-21. doi: 10.1097/IAE.0000000000000870.

PMID:
26583307
13.

Intereye Difference in the Microstructure of Parapapillary Atrophy in Unilateral Primary Open-Angle Glaucoma.

Yoo YJ, Lee EJ, Kim TW.

Invest Ophthalmol Vis Sci. 2016 Aug 1;57(10):4187-93. doi: 10.1167/iovs.16-19059.

PMID:
27548889
14.

Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography a study on diagnostic agreement with Heidelberg Retinal Tomograph.

Leung CK, Ye C, Weinreb RN, Cheung CY, Qiu Q, Liu S, Xu G, Lam DS.

Ophthalmology. 2010 Feb;117(2):267-74. doi: 10.1016/j.ophtha.2009.06.061. Epub 2009 Dec 6.

PMID:
19969364
16.

Baseline topographic optic disc measurements are associated with the development of primary open-angle glaucoma: the Confocal Scanning Laser Ophthalmoscopy Ancillary Study to the Ocular Hypertension Treatment Study.

Zangwill LM, Weinreb RN, Beiser JA, Berry CC, Cioffi GA, Coleman AL, Trick G, Liebmann JM, Brandt JD, Piltz-Seymour JR, Dirkes KA, Vega S, Kass MA, Gordon MO.

Arch Ophthalmol. 2005 Sep;123(9):1188-97.

PMID:
16157798
17.

Longitudinal variability of optic disc and retinal nerve fiber layer measurements.

Leung CK, Cheung CY, Lin D, Pang CP, Lam DS, Weinreb RN.

Invest Ophthalmol Vis Sci. 2008 Nov;49(11):4886-92. doi: 10.1167/iovs.07-1187. Epub 2008 Jun 6.

PMID:
18539940
18.

Relationship Between Juxtapapillary Choroidal Volume and Beta-Zone Parapapillary Atrophy in Eyes With and Without Primary Open-Angle Glaucoma.

Sullivan-Mee M, Patel NB, Pensyl D, Qualls C.

Am J Ophthalmol. 2015 Oct;160(4):637-47.e1. doi: 10.1016/j.ajo.2015.06.024. Epub 2015 Jul 2.

19.

Comparison of fundus autofluorescence between fundus camera and confocal scanning laser ophthalmoscope-based systems.

Park SP, Siringo FS, Pensec N, Hong IH, Sparrow J, Barile G, Tsang SH, Chang S.

Ophthalmic Surg Lasers Imaging Retina. 2013 Nov 1;44(6):536-43. doi: 10.3928/23258160-20131105-04.

20.

Microstructure of β-zone parapapillary atrophy and rate of retinal nerve fiber layer thinning in primary open-angle glaucoma.

Kim YW, Lee EJ, Kim TW, Kim M, Kim H.

Ophthalmology. 2014 Jul;121(7):1341-9. doi: 10.1016/j.ophtha.2014.01.008. Epub 2014 Feb 22.

PMID:
24565742

Supplemental Content

Support Center