Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

Caryolene-forming carbocation rearrangements.

Nguyen QN, Tantillo DJ.

Beilstein J Org Chem. 2013;9:323-31. doi: 10.3762/bjoc.9.37. Epub 2013 Feb 13.

2.

The catalytic effect of the NH3 base on the chemical events in the caryolene-forming carbocation cascade.

Ortega DE, Nguyen QN, Tantillo DJ, Toro-Labbé A.

J Comput Chem. 2016 May 5;37(12):1068-81. doi: 10.1002/jcc.24294. Epub 2016 Feb 2.

PMID:
26833740
3.

Synthetic efficiency in enzyme mechanisms involving carbocations: aristolochene synthase.

Allemann RK, Young NJ, Ma S, Truhlar DG, Gao J.

J Am Chem Soc. 2007 Oct 31;129(43):13008-13. Epub 2007 Oct 5.

4.

Formation of beyerene, kaurene, trachylobane, and atiserene diterpenes by rearrangements that avoid secondary carbocations.

Hong YJ, Tantillo DJ.

J Am Chem Soc. 2010 Apr 21;132(15):5375-86. doi: 10.1021/ja9084786.

PMID:
20353180
5.

Physical constraints on sesquiterpene diversity arising from cyclization of the eudesm-5-yl carbocation.

Hess BA Jr, Smentek L, Noel JP, O'Maille PE.

J Am Chem Soc. 2011 Aug 17;133(32):12632-41. doi: 10.1021/ja203342p. Epub 2011 Jul 26.

PMID:
21714557
6.
7.

A redirected proton pathway in the bacteriorhodopsin mutant Tyr-57-->Asp. Evidence for proton translocation without Schiff base deprotonation.

Sonar S, Marti T, Rath P, Fischer W, Coleman M, Nilsson A, Khorana HG, Rothschild KJ.

J Biol Chem. 1994 Nov 18;269(46):28851-8.

8.

Active Role of Hydrogen Bonds in Rupe and Meyer-Schuster Rearrangements.

Yamabe S, Tsuchida N, Yamazaki S.

J Chem Theory Comput. 2006 Sep;2(5):1379-87. doi: 10.1021/ct600132k.

PMID:
26626845
9.

Does nature click? Theoretical prediction of an enzyme-catalyzed transannular 1,3-dipolar cycloaddition in the biosynthesis of lycojaponicumins A and B.

Krenske EH, Patel A, Houk KN.

J Am Chem Soc. 2013 Nov 20;135(46):17638-42. doi: 10.1021/ja409928z. Epub 2013 Nov 6.

PMID:
24195703
10.

Biomimetic Total Synthesis of Hyperjapones A-E and Hyperjaponols A and C.

Lam HC, Spence JT, George JH.

Angew Chem Int Ed Engl. 2016 Aug 22;55(35):10368-71. doi: 10.1002/anie.201606091. Epub 2016 Jul 27.

PMID:
27461748
11.

The carbon-skeleton rearrangement in tropane alkaloid biosynthesis.

Sandala GM, Smith DM, Radom L.

J Am Chem Soc. 2008 Aug 13;130(32):10684-90. doi: 10.1021/ja801869a. Epub 2008 Jul 16.

PMID:
18627156
12.

Analogies between synthetic and biosynthetic reactions in which [1,2]-alkyl shifts are combined with other events: dyotropic, Schmidt, and carbocation rearrangements.

Gutierrez O, Tantillo DJ.

J Org Chem. 2012 Oct 19;77(20):8845-50. doi: 10.1021/jo301864h. Epub 2012 Sep 28.

PMID:
23006240
13.

Frontier orbital description of the Si(100) surface: a route to symmetry-allowed and concerted [2 + 2] cycloadditions.

Ryan PM, Teague LC, Boland JJ.

J Am Chem Soc. 2009 May 20;131(19):6768-74. doi: 10.1021/ja808450w.

PMID:
19397327
14.

Understanding the Mechanism of the Lewis Acid Promoted [3 + 2] Cycloaddition of Propargylic Alcohol and α-Oxo Ketene Dithioacetals.

Yuan H, Zheng Y, Zhang J.

J Org Chem. 2016 Mar 4;81(5):1989-97. doi: 10.1021/acs.joc.5b02826. Epub 2016 Feb 15.

PMID:
26828703
15.

Intramolecular oxyallyl-carbonyl (3 + 2) cycloadditions.

Krenske EH, He S, Huang J, Du Y, Houk KN, Hsung RP.

J Am Chem Soc. 2013 Apr 10;135(14):5242-5. doi: 10.1021/ja312459b. Epub 2013 Apr 1.

16.

Memory effects in carbocation rearrangements: structural and dynamic study of the norborn-2-en-7-ylmethyl-X solvolysis case.

Ghigo G, Maranzana A, Tonachini G.

J Org Chem. 2013 Sep 20;78(18):9041-50. doi: 10.1021/jo401188e. Epub 2013 Sep 4.

PMID:
23962127
17.

Dynamic behavior of rearranging carbocations - implications for terpene biosynthesis.

Hare SR, Tantillo DJ.

Beilstein J Org Chem. 2016 Feb 29;12:377-90. doi: 10.3762/bjoc.12.41. eCollection 2016. Review. Erratum in: Beilstein J Org Chem. 2017 Aug 15;13:1669.

18.

Dinuclear Zn(II) complex catalyzed phosphodiester cleavage proceeds via a concerted mechanism: a density functional theory study.

Gao H, Ke Z, DeYonker NJ, Wang J, Xu H, Mao ZW, Phillips DL, Zhao C.

J Am Chem Soc. 2011 Mar 9;133(9):2904-15. doi: 10.1021/ja106456u. Epub 2011 Feb 14.

PMID:
21319769
19.

Unusual concerted Lewis acid-Lewis base mechanism for hydrogen activation by a phosphine-borane compound.

Guo Y, Li S.

Inorg Chem. 2008 Jul 21;47(14):6212-9. doi: 10.1021/ic702489s. Epub 2008 Jun 24.

PMID:
18572910
20.

Suppression of the back proton-transfer from Asp85 to the retinal Schiff base in bacteriorhodopsin: a theoretical analysis of structural elements.

Bondar AN, Suhai S, Fischer S, Smith JC, Elstner M.

J Struct Biol. 2007 Mar;157(3):454-69. Epub 2006 Oct 20.

PMID:
17189704

Supplemental Content

Support Center