Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 194

1.

Robustness of chemometrics-based feature selection methods in early cancer detection and biomarker discovery.

Lee HW, Lawton C, Na YJ, Yoon S.

Stat Appl Genet Mol Biol. 2013 Mar 13;12(2):207-23. doi: 10.1515/sagmb-2012-0067.

PMID:
23502343
2.

Robust biomarker identification for cancer diagnosis with ensemble feature selection methods.

Abeel T, Helleputte T, Van de Peer Y, Dupont P, Saeys Y.

Bioinformatics. 2010 Feb 1;26(3):392-8. doi: 10.1093/bioinformatics/btp630. Epub 2009 Nov 25.

PMID:
19942583
3.

A novel class dependent feature selection method for cancer biomarker discovery.

Zhou W, Dickerson JA.

Comput Biol Med. 2014 Apr;47:66-75. doi: 10.1016/j.compbiomed.2014.01.014. Epub 2014 Feb 6.

PMID:
24561345
4.

Data mining techniques for cancer detection using serum proteomic profiling.

Li L, Tang H, Wu Z, Gong J, Gruidl M, Zou J, Tockman M, Clark RA.

Artif Intell Med. 2004 Oct;32(2):71-83. Review.

PMID:
15364092
6.

FSR: feature set reduction for scalable and accurate multi-class cancer subtype classification based on copy number.

Wong G, Leckie C, Kowalczyk A.

Bioinformatics. 2012 Jan 15;28(2):151-9. doi: 10.1093/bioinformatics/btr644. Epub 2011 Nov 21.

PMID:
22110244
7.

A new strategy for faster urinary biomarkers identification by Nano-LC-MALDI-TOF/TOF mass spectrometry.

Benkali K, Marquet P, Rérolle J, Le Meur Y, Gastinel L.

BMC Genomics. 2008 Nov 14;9:541. doi: 10.1186/1471-2164-9-541.

8.

Ovarian cancer detection from metabolomic liquid chromatography/mass spectrometry data by support vector machines.

Guan W, Zhou M, Hampton CY, Benigno BB, Walker LD, Gray A, McDonald JF, Fernández FM.

BMC Bioinformatics. 2009 Aug 22;10:259. doi: 10.1186/1471-2105-10-259.

9.
10.

A scale space approach for unsupervised feature selection in mass spectra classification for ovarian cancer detection.

Ceccarelli M, d'Acierno A, Facchiano A.

BMC Bioinformatics. 2009 Oct 15;10 Suppl 12:S9. doi: 10.1186/1471-2105-10-S12-S9.

11.

A robust and accurate method for feature selection and prioritization from multi-class OMICs data.

Fortino V, Kinaret P, Fyhrquist N, Alenius H, Greco D.

PLoS One. 2014 Sep 23;9(9):e107801. doi: 10.1371/journal.pone.0107801. eCollection 2014.

12.

Effect of size and heterogeneity of samples on biomarker discovery: synthetic and real data assessment.

Di Camillo B, Sanavia T, Martini M, Jurman G, Sambo F, Barla A, Squillario M, Furlanello C, Toffolo G, Cobelli C.

PLoS One. 2012;7(3):e32200. doi: 10.1371/journal.pone.0032200. Epub 2012 Mar 5.

13.

Proteomic data analysis workflow for discovery of candidate biomarker peaks predictive of clinical outcome for patients with acute myeloid leukemia.

Forshed J, Pernemalm M, Tan CS, Lindberg M, Kanter L, Pawitan Y, Lewensohn R, Stenke L, Lehtiö J.

J Proteome Res. 2008 Jun;7(6):2332-41. doi: 10.1021/pr070482e. Epub 2008 May 2.

PMID:
18452325
14.

Compact cancer biomarkers discovery using a swarm intelligence feature selection algorithm.

Martinez E, Alvarez MM, Trevino V.

Comput Biol Chem. 2010 Aug;34(4):244-50. doi: 10.1016/j.compbiolchem.2010.08.003. Epub 2010 Sep 9.

PMID:
20888301
15.

Comparison of feature selection and classification for MALDI-MS data.

Liu Q, Sung AH, Qiao M, Chen Z, Yang JY, Yang MQ, Huang X, Deng Y.

BMC Genomics. 2009 Jul 7;10 Suppl 1:S3. doi: 10.1186/1471-2164-10-S1-S3.

16.

Outcome prediction based on microarray analysis: a critical perspective on methods.

Zervakis M, Blazadonakis ME, Tsiliki G, Danilatou V, Tsiknakis M, Kafetzopoulos D.

BMC Bioinformatics. 2009 Feb 7;10:53. doi: 10.1186/1471-2105-10-53.

17.

Recursive SVM biomarker selection for early detection of breast cancer in peripheral blood.

Zhang F, Kaufman HL, Deng Y, Drabier R.

BMC Med Genomics. 2013;6 Suppl 1:S4. doi: 10.1186/1755-8794-6-S1-S4. Epub 2013 Jan 23.

18.

Pathway-based classification of cancer subtypes.

Kim S, Kon M, DeLisi C.

Biol Direct. 2012 Jul 3;7:21. doi: 10.1186/1745-6150-7-21.

19.

Measuring stability of feature selection in biomedical datasets.

Lustgarten JL, Gopalakrishnan V, Visweswaran S.

AMIA Annu Symp Proc. 2009 Nov 14;2009:406-10.

20.

Simultaneous and exact interval estimates for the contrast of two groups based on an extremely high dimensional variable: application to mass spec data.

Park Y, Downing SR, Kim D, Hahn WC, Li C, Kantoff PW, Wei LJ.

Bioinformatics. 2007 Jun 15;23(12):1451-8. Epub 2007 Apr 25.

PMID:
17459967

Supplemental Content

Support Center