Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 105

1.

Dynamics of phosphodiesterase-induced cAMP dissociation from protein kinase A: capturing transient ternary complexes by HDXMS.

Krishnamurthy S, Moorthy BS, Liqin L, Anand GS.

Biochim Biophys Acta. 2013 Jun;1834(6):1215-21. doi: 10.1016/j.bbapap.2013.02.028. Epub 2013 Mar 15.

PMID:
23501673
2.

Channeling of cAMP in PDE-PKA Complexes Promotes Signal Adaptation.

Tulsian NK, Krishnamurthy S, Anand GS.

Biophys J. 2017 Jun 20;112(12):2552-2566. doi: 10.1016/j.bpj.2017.04.045.

PMID:
28636912
3.

Active site coupling in PDE:PKA complexes promotes resetting of mammalian cAMP signaling.

Krishnamurthy S, Moorthy BS, Xin Xiang L, Xin Shan L, Bharatham K, Tulsian NK, Mihalek I, Anand GS.

Biophys J. 2014 Sep 16;107(6):1426-40. doi: 10.1016/j.bpj.2014.07.050.

4.

Phosphodiesterases catalyze hydrolysis of cAMP-bound to regulatory subunit of protein kinase A and mediate signal termination.

Moorthy BS, Gao Y, Anand GS.

Mol Cell Proteomics. 2011 Feb;10(2):M110.002295. doi: 10.1074/mcp.M110.002295. Epub 2010 Oct 5.

5.
6.

Parallel Allostery by cAMP and PDE Coordinates Activation and Termination Phases in cAMP Signaling.

Krishnamurthy S, Tulsian NK, Chandramohan A, Anand GS.

Biophys J. 2015 Sep 15;109(6):1251-63. doi: 10.1016/j.bpj.2015.06.067. Epub 2015 Aug 11.

7.

Conformational analysis of Epac activation using amide hydrogen/deuterium exchange mass spectrometry.

Brock M, Fan F, Mei FC, Li S, Gessner C, Woods VL Jr, Cheng X.

J Biol Chem. 2007 Nov 2;282(44):32256-63. Epub 2007 Sep 4.

8.

Cyclic AMP analog blocks kinase activation by stabilizing inactive conformation: conformational selection highlights a new concept in allosteric inhibitor design.

Badireddy S, Yunfeng G, Ritchie M, Akamine P, Wu J, Kim CW, Taylor SS, Qingsong L, Swaminathan K, Anand GS.

Mol Cell Proteomics. 2011 Mar;10(3):M110.004390. doi: 10.1074/mcp.M110.004390. Epub 2010 Nov 16.

9.

Dissecting interdomain communication within cAPK regulatory subunit type IIbeta using enhanced amide hydrogen/deuterium exchange mass spectrometry (DXMS).

Zawadzki KM, Hamuro Y, Kim JS, Garrod S, Stranz DD, Taylor SS, Woods VL Jr.

Protein Sci. 2003 Sep;12(9):1980-90.

10.
12.

Electrostatic steering enhances the rate of cAMP binding to phosphodiesterase: Brownian dynamics modeling.

Huang YM, Huber G, McCammon JA.

Protein Sci. 2015 Nov;24(11):1884-9. doi: 10.1002/pro.2794. Epub 2015 Sep 8.

13.
14.
15.

Dynamics of cAPK type IIbeta activation revealed by enhanced amide H/2H exchange mass spectrometry (DXMS).

Hamuro Y, Zawadzki KM, Kim JS, Stranz DD, Taylor SS, Woods VL Jr.

J Mol Biol. 2003 Apr 11;327(5):1065-76.

PMID:
12662931
16.

Amide H/2H exchange reveals communication between the cAMP and catalytic subunit-binding sites in the R(I)alpha subunit of protein kinase A.

Anand GS, Hughes CA, Jones JM, Taylor SS, Komives EA.

J Mol Biol. 2002 Oct 18;323(2):377-86.

PMID:
12381327
18.

Modeling mutant phenotypes and oscillatory dynamics in the Saccharomyces cerevisiae cAMP-PKA pathway.

Gonzales K, Kayıkçı O, Schaeffer DG, Magwene PM.

BMC Syst Biol. 2013 May 17;7:40. doi: 10.1186/1752-0509-7-40.

19.

Protein kinases A and C regulate receptor-mediated increases in cAMP in rabbit erythrocytes.

Adderley SP, Sridharan M, Bowles EA, Stephenson AH, Ellsworth ML, Sprague RS.

Am J Physiol Heart Circ Physiol. 2010 Feb;298(2):H587-93. doi: 10.1152/ajpheart.00975.2009. Epub 2009 Dec 11.

20.

Cyclic AMP- and (Rp)-cAMPS-induced conformational changes in a complex of the catalytic and regulatory (RI{alpha}) subunits of cyclic AMP-dependent protein kinase.

Anand GS, Krishnamurthy S, Bishnoi T, Kornev A, Taylor SS, Johnson DA.

Mol Cell Proteomics. 2010 Oct;9(10):2225-37. doi: 10.1074/mcp.M900388-MCP200. Epub 2010 Feb 18.

Supplemental Content

Support Center