Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 105

1.

Mineral stress affects the cell wall composition of grapevine (Vitis vinifera L.) callus.

Fernandes JC, García-Angulo P, Goulao LF, Acebes JL, Amâncio S.

Plant Sci. 2013 May;205-206:111-20. doi: 10.1016/j.plantsci.2013.01.013. Epub 2013 Feb 6.

PMID:
23498868
2.

Regulation of cell wall remodeling in grapevine (Vitis vinifera L.) callus under individual mineral stress deficiency.

Fernandes JC, Goulao LF, Amâncio S.

J Plant Physiol. 2016 Jan 15;190:95-105. doi: 10.1016/j.jplph.2015.10.007. Epub 2015 Dec 1.

PMID:
26735749
3.

Immunolocalization of cell wall polymers in grapevine (Vitis vinifera) internodes under nitrogen, phosphorus or sulfur deficiency.

Fernandes JC, Goulao LF, Amâncio S.

J Plant Res. 2016 Nov;129(6):1151-1163. Epub 2016 Jul 14.

PMID:
27417099
4.

How the Depletion in Mineral Major Elements Affects Grapevine (Vitis vinifera L.) Primary Cell Wall.

Goulao LF, Fernandes JC, Amâncio S.

Front Plant Sci. 2017 Aug 21;8:1439. doi: 10.3389/fpls.2017.01439. eCollection 2017. Review.

5.

Relating Water Deficiency to Berry Texture, Skin Cell Wall Composition, and Expression of Remodeling Genes in Two Vitis vinifera L. Varieties.

Fernandes JC, Cobb F, Tracana S, Costa GJ, Valente I, Goulao LF, Amâncio S.

J Agric Food Chem. 2015 Apr 22;63(15):3951-61. doi: 10.1021/jf505169z. Epub 2015 Apr 9.

PMID:
25828510
6.

Pectins, Hemicelluloses and Celluloses Show Specific Dynamics in the Internal and External Surfaces of Grape Berry Skin During Ripening.

Fasoli M, Dell'Anna R, Dal Santo S, Balestrini R, Sanson A, Pezzotti M, Monti F, Zenoni S.

Plant Cell Physiol. 2016 Jun;57(6):1332-49. doi: 10.1093/pcp/pcw080. Epub 2016 Apr 19.

PMID:
27095736
7.

Profiling the main cell wall polysaccharides of grapevine leaves using high-throughput and fractionation methods.

Moore JP, Nguema-Ona E, Fangel JU, Willats WG, Hugo A, Vivier MA.

Carbohydr Polym. 2014 Jan;99:190-8. doi: 10.1016/j.carbpol.2013.08.013. Epub 2013 Aug 17.

PMID:
24274496
9.

Sequential cell wall transformations in response to the induction of a pedicel abscission event in Euphorbia pulcherrima (poinsettia).

Lee Y, Derbyshire P, Knox JP, Hvoslef-Eide AK.

Plant J. 2008 Jun;54(6):993-1003. doi: 10.1111/j.1365-313X.2008.03456.x. Epub 2008 Feb 23.

10.

Compositional changes in cell wall polysaccharides from apple fruit callus cultures modulated by different plant growth regulators.

Alayón-Luaces P, Ponce NM, Mroginski LA, Stortz CA, Sozzi GO.

Plant Sci. 2012 Apr;185-186:169-75. doi: 10.1016/j.plantsci.2011.10.008. Epub 2011 Oct 17.

PMID:
22325878
11.

Extensin network formation in Vitis vinifera callus cells is an essential and causal event in rapid and H(2)O(2)-induced reduction in primary cell wall hydration.

Pereira CS, Ribeiro JM, Vatulescu AD, Findlay K, MacDougall AJ, Jackson PA.

BMC Plant Biol. 2011 Jun 14;11:106. doi: 10.1186/1471-2229-11-106.

12.

Comparison of cell wall metabolism in the pulp of three cultivars of 'Nanfeng' tangerine differing in mastication trait.

Lei Y, Liu YZ, Gu QQ, Yang XY, Deng XX, Chen JY.

J Sci Food Agric. 2012 Feb;92(3):496-502. doi: 10.1002/jsfa.4554. Epub 2011 Jul 6.

PMID:
21732384
13.

Fibres from flax overproducing β-1,3-glucanase show increased accumulation of pectin and phenolics and thus higher antioxidant capacity.

Wojtasik W, Kulma A, Dymińska L, Hanuza J, Żebrowski J, Szopa J.

BMC Biotechnol. 2013 Feb 9;13:10. doi: 10.1186/1472-6750-13-10.

14.

Combining FT-IR spectroscopy and multivariate analysis for qualitative and quantitative analysis of the cell wall composition changes during apples development.

Szymanska-Chargot M, Chylinska M, Kruk B, Zdunek A.

Carbohydr Polym. 2015 Jan 22;115:93-103. doi: 10.1016/j.carbpol.2014.08.039. Epub 2014 Aug 27.

PMID:
25439873
15.

Relationship between skin cell wall composition and anthocyanin extractability of Vitis vinifera L. cv. Tempranillo at different grape ripeness degree.

Hernández-Hierro JM, Quijada-Morín N, Martínez-Lapuente L, Guadalupe Z, Ayestarán B, Rivas-Gonzalo JC, Escribano-Bailón MT.

Food Chem. 2014 Mar 1;146:41-7. doi: 10.1016/j.foodchem.2013.09.037. Epub 2013 Sep 14.

PMID:
24176311
16.

[The development, differentiation and composition of flax fiber cells].

Preisner M, Wojtasik W, Szopa J, Kulma A.

Postepy Biochem. 2015;61(4):416-29. Review. Polish.

17.

Raman imaging of changes in the polysaccharides distribution in the cell wall during apple fruit development and senescence.

Szymańska-Chargot M, Chylińska M, Pieczywek PM, Rösch P, Schmitt M, Popp J, Zdunek A.

Planta. 2016 Apr;243(4):935-45. doi: 10.1007/s00425-015-2456-4. Epub 2016 Jan 5.

18.

Cell wall polysaccharide chemistry of peach genotypes with contrasted textures and other fruit traits.

Lahaye M, Falourd X, Quemener B, Ralet MC, Howad W, Dirlewanger E, Arús P.

J Agric Food Chem. 2012 Jul 4;60(26):6594-605. doi: 10.1021/jf301494j. Epub 2012 Jun 25.

PMID:
22697314
19.

Recovery and fine structure variability of RGII sub-domains in wine (Vitis vinifera Merlot).

Buffetto F, Ropartz D, Zhang XJ, Gilbert HJ, Guillon F, Ralet MC.

Ann Bot. 2014 Oct;114(6):1327-37. doi: 10.1093/aob/mcu097. Epub 2014 Jun 7.

20.

Large-scale proteomic analysis of the grapevine leaf apoplastic fluid reveals mainly stress-related proteins and cell wall modifying enzymes.

Delaunois B, Colby T, Belloy N, Conreux A, Harzen A, Baillieul F, Clément C, Schmidt J, Jeandet P, Cordelier S.

BMC Plant Biol. 2013 Feb 8;13:24. doi: 10.1186/1471-2229-13-24.

Supplemental Content

Support Center