Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 240

1.

Transformation of PVP coated silver nanoparticles in a simulated wastewater treatment process and the effect on microbial communities.

Doolette CL, McLaughlin MJ, Kirby JK, Batstone DJ, Harris HH, Ge H, Cornelis G.

Chem Cent J. 2013 Mar 4;7:46. doi: 10.1186/1752-153X-7-46. eCollection 2013.

2.

Transformation of silver nanoparticles in fresh, aged, and incinerated biosolids.

Impellitteri CA, Harmon S, Silva RG, Miller BW, Scheckel KG, Luxton TP, Schupp D, Panguluri S.

Water Res. 2013 Aug 1;47(12):3878-86. doi: 10.1016/j.watres.2012.12.041. Epub 2013 Mar 21.

PMID:
23561507
3.

Upflow anaerobic sludge blanket reactor--a review.

Bal AS, Dhagat NN.

Indian J Environ Health. 2001 Apr;43(2):1-82. Review.

PMID:
12397675
4.

Microbial community response to silver nanoparticles and Ag+ in nitrifying activated sludge revealed by ion semiconductor sequencing.

Gwin CA, Lefevre E, Alito CL, Gunsch CK.

Sci Total Environ. 2018 Mar;616-617:1014-1021. doi: 10.1016/j.scitotenv.2017.10.217. Epub 2017 Nov 6.

PMID:
29122352
5.

Pyrosequencing reveals higher impact of silver nanoparticles than Ag+ on the microbial community structure of activated sludge.

Yang Y, Quensen J, Mathieu J, Wang Q, Wang J, Li M, Tiedje JM, Alvarez PJ.

Water Res. 2014 Jan 1;48:317-25. doi: 10.1016/j.watres.2013.09.046. Epub 2013 Oct 5.

PMID:
24120408
6.

Assessment of the fate of silver nanoparticles in the A(2)O-MBR system.

Yuan ZH, Yang X, Hu A, Zheng YM, Yu CP.

Sci Total Environ. 2016 Feb 15;544:901-7. doi: 10.1016/j.scitotenv.2015.11.158. Epub 2015 Dec 17.

PMID:
26706763
7.

Bacterial response to a continuous long-term exposure of silver nanoparticles at sub-ppm silver concentrations in a membrane bioreactor activated sludge system.

Zhang C, Liang Z, Hu Z.

Water Res. 2014 Mar 1;50:350-8. doi: 10.1016/j.watres.2013.10.047. Epub 2013 Oct 27.

PMID:
24210505
8.

Fate and transformation of silver nanoparticles in urban wastewater systems.

Kaegi R, Voegelin A, Ort C, Sinnet B, Thalmann B, Krismer J, Hagendorfer H, Elumelu M, Mueller E.

Water Res. 2013 Aug 1;47(12):3866-77. doi: 10.1016/j.watres.2012.11.060. Epub 2013 Mar 26.

PMID:
23571111
9.

Long-term effects of sulfidized silver nanoparticles in sewage sludge on soil microflora.

Kraas M, Schlich K, Knopf B, Wege F, K├Ągi R, Terytze K, Hund-Rinke K.

Environ Toxicol Chem. 2017 Dec;36(12):3305-3313. doi: 10.1002/etc.3904. Epub 2017 Sep 22.

PMID:
28671293
10.

Speciation analysis of silver nanoparticles and silver ions in antibacterial products and environmental waters via cloud point extraction-based separation.

Chao JB, Liu JF, Yu SJ, Feng YD, Tan ZQ, Liu R, Yin YG.

Anal Chem. 2011 Sep 1;83(17):6875-82. doi: 10.1021/ac201086a. Epub 2011 Aug 9.

PMID:
21797201
11.

Influence of silver nanoparticles and liberated silver ions on nitrifying sludge: ammonia oxidation inhibitory kinetics and mechanism.

Giao NT, Limpiyakorn T, Kunapongkiti P, Thuptimdang P, Siripattanakul-Ratpukdi S.

Environ Sci Pollut Res Int. 2017 Apr;24(10):9229-9240. doi: 10.1007/s11356-017-8561-0. Epub 2017 Feb 21.

PMID:
28224336
12.

Transformation of Silver Nanoparticles in Sewage Sludge during Incineration.

Meier C, Voegelin A, Pradas del Real A, Sarret G, Mueller CR, Kaegi R.

Environ Sci Technol. 2016 Apr 5;50(7):3503-10. doi: 10.1021/acs.est.5b04804. Epub 2016 Mar 9.

PMID:
26840361
13.

Sorption and dissolution of bare and coated silver nanoparticles in soil suspensions--Influence of soil and particle characteristics.

Hedberg J, Oromieh AG, Kleja DB, Wallinder IO.

J Environ Sci Health A Tox Hazard Subst Environ Eng. 2015;50(9):891-900. doi: 10.1080/10934529.2015.1030271.

PMID:
26061202
14.

Potential nanosilver impact on anaerobic digestion at moderate silver concentrations.

Yang Y, Chen Q, Wall JD, Hu Z.

Water Res. 2012 Mar 15;46(4):1176-84. doi: 10.1016/j.watres.2011.12.024. Epub 2011 Dec 14.

PMID:
22209276
15.

Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids.

Ma R, Levard C, Judy JD, Unrine JM, Durenkamp M, Martin B, Jefferson B, Lowry GV.

Environ Sci Technol. 2014;48(1):104-12. doi: 10.1021/es403646x. Epub 2013 Dec 9.

PMID:
24266610
16.

Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant.

Kaegi R, Voegelin A, Sinnet B, Zuleeg S, Hagendorfer H, Burkhardt M, Siegrist H.

Environ Sci Technol. 2011 May 1;45(9):3902-8. doi: 10.1021/es1041892. Epub 2011 Apr 5.

PMID:
21466186
17.

Differential sensitivity of nitrifying bacteria to silver nanoparticles in activated sludge.

Yang Y, Li M, Michels C, Moreira-Soares H, Alvarez PJ.

Environ Toxicol Chem. 2014 Oct;33(10):2234-9. doi: 10.1002/etc.2678. Epub 2014 Aug 22.

PMID:
24990819
18.

Controlled evaluation of silver nanoparticle sulfidation in a full-scale wastewater treatment plant.

Kent RD, Oser JG, Vikesland PJ.

Environ Sci Technol. 2014;48(15):8564-72. doi: 10.1021/es404989t. Epub 2014 Jul 10.

PMID:
25009955
19.

Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants.

Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES.

PLoS One. 2012;7(10):e47674. doi: 10.1371/journal.pone.0047674. Epub 2012 Oct 16.

20.

Silver Nanoparticles Entering Soils via the Wastewater-Sludge-Soil Pathway Pose Low Risk to Plants but Elevated Cl Concentrations Increase Ag Bioavailability.

Wang P, Menzies NW, Dennis PG, Guo J, Forstner C, Sekine R, Lombi E, Kappen P, Bertsch PM, Kopittke PM.

Environ Sci Technol. 2016 Aug 2;50(15):8274-81. doi: 10.1021/acs.est.6b01180. Epub 2016 Jul 15.

PMID:
27380126

Supplemental Content

Support Center