Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 162

1.

State concentration exponent as a measure of quickness in Kauffman-type networks.

Amari S, Ando H, Toyoizumi T, Masuda N.

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Feb;87(2):022814.

PMID:
23496575
2.

Boolean dynamics of Kauffman models with a scale-free network.

Iguchi K, Kinoshita S, Yamada HS.

J Theor Biol. 2007 Jul 7;247(1):138-51.

PMID:
17408697
3.

Scaling laws in critical random Boolean networks with general in- and out-degree distributions.

Möller M, Drossel B.

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 May;87(5):052106.

PMID:
23767486
4.

Random walks in weighted networks with a perfect trap: an application of Laplacian spectra.

Lin Y, Zhang Z.

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):062140.

PMID:
23848660
5.

Counting and classifying attractors in high dimensional dynamical systems.

Bagley RJ, Glass L.

J Theor Biol. 1996 Dec 7;183(3):269-84.

PMID:
9015450
6.

Canalization in the critical states of highly connected networks of competing Boolean nodes.

Reichl MD, Bassler KE.

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Nov;84(5 Pt 2):056103.

PMID:
22181469
7.

Intrinsic properties of Boolean dynamics in complex networks.

Kinoshita S, Iguchi K, Yamada HS.

J Theor Biol. 2009 Feb 7;256(3):351-69. doi: 10.1016/j.jtbi.2008.10.014.

PMID:
19014957
8.

Robustness of a network formed by n interdependent networks with a one-to-one correspondence of dependent nodes.

Gao J, Buldyrev SV, Havlin S, Stanley HE.

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 2):066134.

PMID:
23005189
9.

Feedback topology and XOR-dynamics in Boolean networks with varying input structure.

Ciandrini L, Maffi C, Motta A, Bassetti B, Cosentino Lagomarsino M.

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 2):026122.

PMID:
19792215
10.

Balance between noise and information flow maximizes set complexity of network dynamics.

Mäki-Marttunen T, Kesseli J, Nykter M.

PLoS One. 2013;8(3):e56523. doi: 10.1371/journal.pone.0056523.

11.

Stochastic Boolean networks: an efficient approach to modeling gene regulatory networks.

Liang J, Han J.

BMC Syst Biol. 2012 Aug 28;6:113. doi: 10.1186/1752-0509-6-113.

12.

Dynamics of Boolean networks controlled by biologically meaningful functions.

Raeymaekers L.

J Theor Biol. 2002 Oct 7;218(3):331-41.

PMID:
12381434
13.

Kauffman Boolean model in undirected scale-free networks.

Fronczak P, Fronczak A, Hołyst JA.

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Mar;77(3 Pt 2):036119.

PMID:
18517473
14.

Damage spreading in spatial and small-world random Boolean networks.

Lu Q, Teuscher C.

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Feb;89(2):022806.

PMID:
25353533
15.

Biologically meaningful update rules increase the critical connectivity of generalized Kauffman networks.

Wittmann DM, Marr C, Theis FJ.

J Theor Biol. 2010 Oct 7;266(3):436-48. doi: 10.1016/j.jtbi.2010.07.007.

PMID:
20654629
16.

A parallel attractor-finding algorithm based on Boolean satisfiability for genetic regulatory networks.

Guo W, Yang G, Wu W, He L, Sun M.

PLoS One. 2014 Apr 9;9(4):e94258. doi: 10.1371/journal.pone.0094258.

17.

Mutual information in random Boolean models of regulatory networks.

Ribeiro AS, Kauffman SA, Lloyd-Price J, Samuelsson B, Socolar JE.

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jan;77(1 Pt 1):011901.

PMID:
18351870
18.

Simulation study in Probabilistic Boolean Network models for genetic regulatory networks.

Zhang SQ, Ching WK, Ng MK, Akutsu T.

Int J Data Min Bioinform. 2007;1(3):217-40.

PMID:
18399072
19.

Jimena: efficient computing and system state identification for genetic regulatory networks.

Karl S, Dandekar T.

BMC Bioinformatics. 2013 Oct 11;14:306. doi: 10.1186/1471-2105-14-306.

20.

Analysis of relative influence of nodes in directed networks.

Masuda N, Kawamura Y, Kori H.

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Oct;80(4 Pt 2):046114.

PMID:
19905397
Items per page

Supplemental Content

Support Center