Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 55

1.

Characterizing microbial community and geochemical dynamics at hydrothermal vents using osmotically driven continuous fluid samplers.

Robidart J, Callister SJ, Song P, Nicora CD, Wheat CG, Girguis PR.

Environ Sci Technol. 2013 May 7;47(9):4399-407. doi: 10.1021/es3037302. Epub 2013 Apr 5.

PMID:
23495803
2.

Assessing the influence of physical, geochemical and biological factors on anaerobic microbial primary productivity within hydrothermal vent chimneys.

Olins HC, Rogers DR, Frank KL, Vidoudez C, Girguis PR.

Geobiology. 2013 May;11(3):279-93. doi: 10.1111/gbi.12034. Epub 2013 Mar 29.

PMID:
23551687
3.

In situ chemistry and microbial community compositions in five deep-sea hydrothermal fluid samples from Irina II in the Logatchev field.

Perner M, Gonnella G, Hourdez S, Böhnke S, Kurtz S, Girguis P.

Environ Microbiol. 2013 May;15(5):1551-60. doi: 10.1111/1462-2920.12038. Epub 2012 Nov 22.

PMID:
23171403
4.

Iron-based microbial ecosystem on and below the seafloor: a case study of hydrothermal fields of the southern mariana trough.

Kato S, Nakamura K, Toki T, Ishibashi J, Tsunogai U, Hirota A, Ohkuma M, Yamagishi A.

Front Microbiol. 2012 Mar 15;3:89. doi: 10.3389/fmicb.2012.00089. eCollection 2012.

5.

Archaeal diversity and community development in deep-sea hydrothermal vents.

Takai K, Nakamura K.

Curr Opin Microbiol. 2011 Jun;14(3):282-91. doi: 10.1016/j.mib.2011.04.013. Epub 2011 May 23. Review.

PMID:
21602097
6.

Predicting the response of the deep-ocean microbiome to geochemical perturbations by hydrothermal vents.

Reed DC, Breier JA, Jiang H, Anantharaman K, Klausmeier CA, Toner BM, Hancock C, Speer K, Thurnherr AM, Dick GJ.

ISME J. 2015 Aug;9(8):1857-69. doi: 10.1038/ismej.2015.4. Epub 2015 Feb 6.

7.

Microbial diversity of Loki's Castle black smokers at the Arctic Mid-Ocean Ridge.

Jaeschke A, Jørgensen SL, Bernasconi SM, Pedersen RB, Thorseth IH, Früh-Green GL.

Geobiology. 2012 Nov;10(6):548-61. doi: 10.1111/gbi.12009. Epub 2012 Sep 25.

PMID:
23006788
8.

Metatranscriptomics reveal differences in in situ energy and nitrogen metabolism among hydrothermal vent snail symbionts.

Sanders JG, Beinart RA, Stewart FJ, Delong EF, Girguis PR.

ISME J. 2013 Aug;7(8):1556-67. doi: 10.1038/ismej.2013.45. Epub 2013 Apr 25.

9.

Linking geology, fluid chemistry, and microbial activity of basalt- and ultramafic-hosted deep-sea hydrothermal vent environments.

Perner M, Hansen M, Seifert R, Strauss H, Koschinsky A, Petersen S.

Geobiology. 2013 Jul;11(4):340-55. doi: 10.1111/gbi.12039. Epub 2013 May 6.

PMID:
23647923
10.

Temporal change in deep-sea benthic ecosystems: a review of the evidence from recent time-series studies.

Glover AG, Gooday AJ, Bailey DM, Billett DS, Chevaldonné P, Colaço A, Copley J, Cuvelier D, Desbruyères D, Kalogeropoulou V, Klages M, Lampadariou N, Lejeusne C, Mestre NC, Paterson GL, Perez T, Ruhl H, Sarrazin J, Soltwedel T, Soto EH, Thatje S, Tselepides A, Van Gaever S, Vanreusel A.

Adv Mar Biol. 2010;58:1-95. doi: 10.1016/B978-0-12-381015-1.00001-0. Review.

PMID:
20959156
11.

Comparison of intact polar lipid with microbial community composition of vent deposits of the Rainbow and Lucky Strike hydrothermal fields.

Gibson RA, van der Meer MT, Hopmans EC, Reysenbach AL, Schouten S, Sinninghe Damsté JS.

Geobiology. 2013 Jan;11(1):72-85. doi: 10.1111/gbi.12017. Epub 2012 Nov 21.

PMID:
23231657
12.

Life and death of deep-sea vents: bacterial diversity and ecosystem succession on inactive hydrothermal sulfides.

Sylvan JB, Toner BM, Edwards KJ.

MBio. 2012 Jan 24;3(1):e00279-11. doi: 10.1128/mBio.00279-11. Print 2012.

13.

The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs.

Lesniewski RA, Jain S, Anantharaman K, Schloss PD, Dick GJ.

ISME J. 2012 Dec;6(12):2257-68. doi: 10.1038/ismej.2012.63. Epub 2012 Jun 14.

14.

Archaeal diversity associated with in situ samplers deployed on hydrothermal vents on the East Pacific Rise (13 degrees N).

Nercessian O, Reysenbach AL, Prieur D, Jeanthon C.

Environ Microbiol. 2003 Jun;5(6):492-502.

PMID:
12755716
15.

Novel and diverse integron integrase genes and integron-like gene cassettes are prevalent in deep-sea hydrothermal vents.

Elsaied H, Stokes HW, Nakamura T, Kitamura K, Fuse H, Maruyama A.

Environ Microbiol. 2007 Sep;9(9):2298-312.

PMID:
17686026
16.

Colonization of nascent, deep-sea hydrothermal vents by a novel Archaeal and Nanoarchaeal assemblage.

McCliment EA, Voglesonger KM, O'Day PA, Dunn EE, Holloway JR, Cary SC.

Environ Microbiol. 2006 Jan;8(1):114-25.

PMID:
16343327
17.

Time-series analysis of two hydrothermal plumes at 9°50'N East Pacific Rise reveals distinct, heterogeneous bacterial populations.

Sylvan JB, Pyenson BC, Rouxel O, German CR, Edwards KJ.

Geobiology. 2012 Mar;10(2):178-92. doi: 10.1111/j.1472-4669.2011.00315.x. Epub 2012 Jan 4.

PMID:
22221398
18.

Deep-sea hydrothermal vents: potential hot spots for natural products discovery?

Thornburg CC, Zabriskie TM, McPhail KL.

J Nat Prod. 2010 Mar 26;73(3):489-99. doi: 10.1021/np900662k. Review.

PMID:
20099811
19.

Organic sulfur metabolisms in hydrothermal environments.

Rogers KL, Schulte MD.

Geobiology. 2012 Jul;10(4):320-32. doi: 10.1111/j.1472-4669.2012.00324.x. Epub 2012 Apr 2.

PMID:
22469147
20.

Distribution, phylogenetic diversity and physiological characteristics of epsilon-Proteobacteria in a deep-sea hydrothermal field.

Nakagawa S, Takai K, Inagaki F, Hirayama H, Nunoura T, Horikoshi K, Sako Y.

Environ Microbiol. 2005 Oct;7(10):1619-32.

PMID:
16156735

Supplemental Content

Support Center