Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 319

1.

Panchromatic quantum-dot-sensitized solar cells based on a parallel tandem structure.

Zhou N, Yang Y, Huang X, Wu H, Luo Y, Li D, Meng Q.

ChemSusChem. 2013 Apr;6(4):687-92. doi: 10.1002/cssc.201200763. Epub 2013 Mar 12.

PMID:
23495072
2.

Dynamic study of highly efficient CdS/CdSe quantum dot-sensitized solar cells fabricated by electrodeposition.

Yu XY, Liao JY, Qiu KQ, Kuang DB, Su CY.

ACS Nano. 2011 Dec 27;5(12):9494-500. doi: 10.1021/nn203375g. Epub 2011 Nov 2.

PMID:
22032641
3.

CdS/CdSe-cosensitized TiO₂ photoanode for quantum-dot-sensitized solar cells by a microwave-assisted chemical bath deposition method.

Zhu G, Pan L, Xu T, Sun Z.

ACS Appl Mater Interfaces. 2011 Aug;3(8):3146-51. doi: 10.1021/am200648b. Epub 2011 Jul 19.

PMID:
21744836
4.

ZnO nanoparticle based highly efficient CdS/CdSe quantum dot-sensitized solar cells.

Li C, Yang L, Xiao J, Wu YC, Søndergaard M, Luo Y, Li D, Meng Q, Iversen BB.

Phys Chem Chem Phys. 2013 Jun 14;15(22):8710-5. doi: 10.1039/c3cp50365h. Epub 2013 May 2.

PMID:
23639947
5.

Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%.

Santra PK, Kamat PV.

J Am Chem Soc. 2012 Feb 8;134(5):2508-11. doi: 10.1021/ja211224s. Epub 2012 Jan 27.

PMID:
22280479
6.

ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells.

Tian J, Zhang Q, Zhang L, Gao R, Shen L, Zhang S, Qu X, Cao G.

Nanoscale. 2013 Feb 7;5(3):936-43. doi: 10.1039/c2nr32663a. Epub 2012 Nov 20.

PMID:
23166058
7.

Sea urchin TiO2-nanoparticle hybrid composite photoelectrodes for CdS/CdSe/ZnS quantum-dot-sensitized solar cells.

Kong EH, Chang YJ, Park YC, Yoon YH, Park HJ, Jang HM.

Phys Chem Chem Phys. 2012 Apr 7;14(13):4620-5. doi: 10.1039/c2cp24106d. Epub 2012 Feb 24.

PMID:
22362094
8.

Microwave assisted CdSe quantum dot deposition on TiO2 films for dye-sensitized solar cells.

Zhu G, Pan L, Xu T, Zhao Q, Lu B, Sun Z.

Nanoscale. 2011 May;3(5):2188-93. doi: 10.1039/c1nr10068h. Epub 2011 Mar 30.

PMID:
21451826
9.

Reduced charge recombination in a co-sensitized quantum dot solar cell with two different sizes of CdSe quantum dot.

Chen J, Lei W, Deng WQ.

Nanoscale. 2011 Feb;3(2):674-7. doi: 10.1039/c0nr00591f. Epub 2010 Dec 6.

PMID:
21132215
10.

Composite counter electrode based on nanoparticulate PbS and carbon black: towards quantum dot-sensitized solar cells with both high efficiency and stability.

Yang Y, Zhu L, Sun H, Huang X, Luo Y, Li D, Meng Q.

ACS Appl Mater Interfaces. 2012 Nov;4(11):6162-8. doi: 10.1021/am301787q. Epub 2012 Oct 25.

PMID:
23075399
11.

Near infrared absorption of CdSe(x)Te(1-x) alloyed quantum dot sensitized solar cells with more than 6% efficiency and high stability.

Pan Z, Zhao K, Wang J, Zhang H, Feng Y, Zhong X.

ACS Nano. 2013 Jun 25;7(6):5215-22. doi: 10.1021/nn400947e. Epub 2013 May 30.

PMID:
23705771
12.

Supersensitization of CdS quantum dots with a near-infrared organic dye: toward the design of panchromatic hybrid-sensitized solar cells.

Choi H, Nicolaescu R, Paek S, Ko J, Kamat PV.

ACS Nano. 2011 Nov 22;5(11):9238-45. doi: 10.1021/nn2035022. Epub 2011 Oct 6.

PMID:
21961965
13.

Efficient passivated phthalocyanine-quantum dot solar cells.

Blas-Ferrando VM, Ortiz J, González-Pedro V, Sánchez RS, Mora-Seró I, Fernández-Lázaro F, Sastre-Santos Á.

Chem Commun (Camb). 2015 Jan 31;51(9):1732-5. doi: 10.1039/c4cc08104h.

PMID:
25519050
14.

Ligand capping effect for dye solar cells with a CdSe quantum dot sensitized ZnO nanorod photoanode.

Sun XW, Chen J, Song JL, Zhao DW, Deng WQ, Lei W.

Opt Express. 2010 Jan 18;18(2):1296-301. doi: 10.1364/OE.18.001296.

PMID:
20173955
15.

A solid-state CdSe quantum dot sensitized solar cell based on a quaterthiophene as a hole transporting material.

Barceló I, Campiña JM, Lana-Villarreal T, Gómez R.

Phys Chem Chem Phys. 2012 Apr 28;14(16):5801-7. doi: 10.1039/c2cp40609h. Epub 2012 Mar 16.

PMID:
22426179
16.

Enhanced performance of PbS-sensitized solar cells via controlled successive ionic-layer adsorption and reaction.

Abbas MA, Basit MA, Park TJ, Bang JH.

Phys Chem Chem Phys. 2015 Apr 21;17(15):9752-60. doi: 10.1039/c5cp00941c.

PMID:
25773573
17.

CdS/CdSe quantum dot co-sensitized graphene nanocomposites via polymer brush templated synthesis for potential photovoltaic applications.

Yan J, Ye Q, Wang X, Yu B, Zhou F.

Nanoscale. 2012 Mar 21;4(6):2109-16. doi: 10.1039/c2nr11893a. Epub 2012 Feb 21.

PMID:
22349081
18.

Flexible photovoltaic cells based on a graphene-CdSe quantum dot nanocomposite.

Chen J, Xu F, Wu J, Qasim K, Zhou Y, Lei W, Sun LT, Zhang Y.

Nanoscale. 2012 Jan 21;4(2):441-3. doi: 10.1039/c2nr11656a. Epub 2011 Dec 12.

PMID:
22159842
19.

ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells.

Jean J, Chang S, Brown PR, Cheng JJ, Rekemeyer PH, Bawendi MG, Gradečak S, Bulović V.

Adv Mater. 2013 May 28;25(20):2790-6. doi: 10.1002/adma.201204192. Epub 2013 Feb 26.

PMID:
23440957
20.

Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process.

Lee H, Wang M, Chen P, Gamelin DR, Zakeeruddin SM, Grätzel M, Nazeeruddin MK.

Nano Lett. 2009 Dec;9(12):4221-7. doi: 10.1021/nl902438d.

PMID:
19891465

Supplemental Content

Support Center