Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 107

1.

Gout-causing Q141K mutation in ABCG2 leads to instability of the nucleotide-binding domain and can be corrected with small molecules.

Woodward OM, Tukaye DN, Cui J, Greenwell P, Constantoulakis LM, Parker BS, Rao A, Köttgen M, Maloney PC, Guggino WB.

Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5223-8. doi: 10.1073/pnas.1214530110. Epub 2013 Mar 14.

2.

Effects of the gout-causing Q141K polymorphism and a CFTR ΔF508 mimicking mutation on the processing and stability of the ABCG2 protein.

Sarankó H, Tordai H, Telbisz Á, Özvegy-Laczka C, Erdős G, Sarkadi B, Hegedűs T.

Biochem Biophys Res Commun. 2013 Jul 19;437(1):140-5. doi: 10.1016/j.bbrc.2013.06.054. Epub 2013 Jun 22.

PMID:
23800412
3.

Identification of ABCG2 dysfunction as a major factor contributing to gout.

Matsuo H, Takada T, Ichida K, Nakamura T, Nakayama A, Takada Y, Okada C, Sakurai Y, Hosoya T, Kanai Y, Suzuki H, Shinomiya N.

Nucleosides Nucleotides Nucleic Acids. 2011 Dec;30(12):1098-104. doi: 10.1080/15257770.2011.627902.

PMID:
22132963
4.

ABCG2/BCRP dysfunction as a major cause of gout.

Matsuo H, Takada T, Ichida K, Nakamura T, Nakayama A, Suzuki H, Hosoya T, Shinomiya N.

Nucleosides Nucleotides Nucleic Acids. 2011 Dec;30(12):1117-28. doi: 10.1080/15257770.2011.633954.

PMID:
22132966
5.

Joint effects of alcohol consumption and ABCG2 Q141K on chronic tophaceous gout risk.

Tu HP, Ko AM, Chiang SL, Lee SS, Lai HM, Chung CM, Huang CM, Lee CH, Kuo TM, Hsieh MJ, Ko YC.

J Rheumatol. 2014 Apr;41(4):749-58. doi: 10.3899/jrheum.130870. Epub 2014 Feb 15.

PMID:
24532835
6.

Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout.

Woodward OM, Köttgen A, Coresh J, Boerwinkle E, Guggino WB, Köttgen M.

Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10338-42. doi: 10.1073/pnas.0901249106. Epub 2009 Jun 8.

7.

ABCG2: the molecular mechanisms of urate secretion and gout.

Woodward OM.

Am J Physiol Renal Physiol. 2015 Sep 15;309(6):F485-8. doi: 10.1152/ajprenal.00242.2015. Epub 2015 Jul 1. Review.

8.

The C421A (Q141K) polymorphism enhances the 3'-untranslated region (3'-UTR)-dependent regulation of ATP-binding cassette transporter ABCG2.

Ripperger A, Benndorf RA.

Biochem Pharmacol. 2016 Mar 15;104:139-47. doi: 10.1016/j.bcp.2016.02.011. Epub 2016 Feb 21.

PMID:
26903388
9.

[Recent progress and prospects for research on urate efflux transporter ABCG2].

Ichida K.

Nihon Rinsho. 2014 Apr;72(4):757-65. Review. Japanese.

PMID:
24796111
10.

Ethnic differences in ATP-binding cassette transporter, sub-family G, member 2 (ABCG2/BCRP): genotype combinations and estimated functions.

Sakiyama M, Matsuo H, Takada Y, Nakamura T, Nakayama A, Takada T, Kitajiri S, Wakai K, Suzuki H, Shinomiya N.

Drug Metab Pharmacokinet. 2014;29(6):490-2. doi: 10.2133/dmpk.DMPK-14-SC-041. Epub 2014 May 27.

11.

Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population.

Matsuo H, Takada T, Ichida K, Nakamura T, Nakayama A, Ikebuchi Y, Ito K, Kusanagi Y, Chiba T, Tadokoro S, Takada Y, Oikawa Y, Inoue H, Suzuki K, Okada R, Nishiyama J, Domoto H, Watanabe S, Fujita M, Morimoto Y, Naito M, Nishio K, Hishida A, Wakai K, Asai Y, Niwa K, Kamakura K, Nonoyama S, Sakurai Y, Hosoya T, Kanai Y, Suzuki H, Hamajima N, Shinomiya N.

Sci Transl Med. 2009 Nov 4;1(5):5ra11. doi: 10.1126/scitranslmed.3000237.

12.

ABCG2 dysfunction increases the risk of renal overload hyperuricemia.

Matsuo H, Takada T, Nakayama A, Shimizu T, Sakiyama M, Shimizu S, Chiba T, Nakashima H, Nakamura T, Takada Y, Sakurai Y, Hosoya T, Shinomiya N, Ichida K.

Nucleosides Nucleotides Nucleic Acids. 2014;33(4-6):266-74. doi: 10.1080/15257770.2013.866679.

PMID:
24940678
13.

The most common cystic fibrosis-associated mutation destabilizes the dimeric state of the nucleotide-binding domains of CFTR.

Jih KY, Li M, Hwang TC, Bompadre SG.

J Physiol. 2011 Jun 1;589(Pt 11):2719-31. doi: 10.1113/jphysiol.2010.202861. Epub 2011 Apr 11.

14.

Major SNP (Q141K) variant of human ABC transporter ABCG2 undergoes lysosomal and proteasomal degradations.

Furukawa T, Wakabayashi K, Tamura A, Nakagawa H, Morishima Y, Osawa Y, Ishikawa T.

Pharm Res. 2009 Feb;26(2):469-79. doi: 10.1007/s11095-008-9752-7. Epub 2008 Oct 29.

15.

ABCG transporters and disease.

Woodward OM, Köttgen A, Köttgen M.

FEBS J. 2011 Sep;278(18):3215-25. doi: 10.1111/j.1742-4658.2011.08171.x. Epub 2011 Jun 13. Review.

16.

A meta-analysis of the associations between the Q141K and Q126X ABCG2 gene variants and gout risk.

Li R, Miao L, Qin L, Xiang Y, Zhang X, Peng H, Mailamuguli, Sun Y, Yao H.

Int J Clin Exp Pathol. 2015 Sep 1;8(9):9812-23. eCollection 2015.

17.

The rs2231142 variant of the ABCG2 gene is associated with uric acid levels and gout among Japanese people.

Yamagishi K, Tanigawa T, Kitamura A, Köttgen A, Folsom AR, Iso H; CIRCS Investigators.

Rheumatology (Oxford). 2010 Aug;49(8):1461-5. doi: 10.1093/rheumatology/keq096. Epub 2010 Apr 25.

PMID:
20421215
18.

Functional polymorphisms of the ABCG2 gene are associated with gout disease in the Chinese Han male population.

Zhou D, Liu Y, Zhang X, Gu X, Wang H, Luo X, Zhang J, Zou H, Guan M.

Int J Mol Sci. 2014 May 22;15(5):9149-59. doi: 10.3390/ijms15059149.

19.

The short apical membrane half-life of rescued {Delta}F508-cystic fibrosis transmembrane conductance regulator (CFTR) results from accelerated endocytosis of {Delta}F508-CFTR in polarized human airway epithelial cells.

Swiatecka-Urban A, Brown A, Moreau-Marquis S, Renuka J, Coutermarsh B, Barnaby R, Karlson KH, Flotte TR, Fukuda M, Langford GM, Stanton BA.

J Biol Chem. 2005 Nov 4;280(44):36762-72. Epub 2005 Aug 30.

20.

[ROLE OF SLC2A9 AND ABCG2 GENE POLYMORPHISMS IN ORIGIN OF HYPERURICEMIA AND GOUT].

Fadieieva A, Prystupa L, Pogorelova O, Kirichenko N, Dudchenko I.

Georgian Med News. 2016 Mar;(252):79-83. Review. Russian.

PMID:
27119840

Supplemental Content

Support Center