Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Odor enrichment sculpts the abundance of olfactory bulb mitral cells.

Johnson MC, Biju KC, Hoffman J, Fadool DA.

Neurosci Lett. 2013 Apr 29;541:173-8. doi: 10.1016/j.neulet.2013.02.027.

2.

State-dependent sculpting of olfactory sensory neurons is attributed to sensory enrichment, odor deprivation, and aging.

Cavallin MA, Powell K, Biju KC, Fadool DA.

Neurosci Lett. 2010 Oct 11;483(2):90-5. doi: 10.1016/j.neulet.2010.07.059.

3.

Kv1.3 channel gene-targeted deletion produces "Super-Smeller Mice" with altered glomeruli, interacting scaffolding proteins, and biophysics.

Fadool DA, Tucker K, Perkins R, Fasciani G, Thompson RN, Parsons AD, Overton JM, Koni PA, Flavell RA, Kaczmarek LK.

Neuron. 2004 Feb 5;41(3):389-404.

4.

The slack sodium-activated potassium channel provides a major outward current in olfactory neurons of Kv1.3-/- super-smeller mice.

Lu S, Das P, Fadool DA, Kaczmarek LK.

J Neurophysiol. 2010 Jun;103(6):3311-9. doi: 10.1152/jn.00607.2009.

5.

Mitral cells of the olfactory bulb perform metabolic sensing and are disrupted by obesity at the level of the Kv1.3 ion channel.

Fadool DA, Tucker K, Pedarzani P.

PLoS One. 2011;6(9):e24921. doi: 10.1371/journal.pone.0024921.

6.

Glucose sensitivity of mouse olfactory bulb neurons is conveyed by a voltage-gated potassium channel.

Tucker K, Cho S, Thiebaud N, Henderson MX, Fadool DA.

J Physiol. 2013 May 15;591(10):2541-61. doi: 10.1113/jphysiol.2013.254086.

7.
8.
9.

Mitochondrial Ultrastructure and Glucose Signaling Pathways Attributed to the Kv1.3 Ion Channel.

Kovach CP, Al Koborssy D, Huang Z, Chelette BM, Fadool JM, Fadool DA.

Front Physiol. 2016 May 19;7:178. doi: 10.3389/fphys.2016.00178.

10.
11.

Odor-induced persistent discharge of mitral cells in the mouse olfactory bulb.

Matsumoto H, Kashiwadani H, Nagao H, Aiba A, Mori K.

J Neurophysiol. 2009 Apr;101(4):1890-900. doi: 10.1152/jn.91019.2008.

12.

Tbr2 deficiency in mitral and tufted cells disrupts excitatory-inhibitory balance of neural circuitry in the mouse olfactory bulb.

Mizuguchi R, Naritsuka H, Mori K, Mao CA, Klein WH, Yoshihara Y.

J Neurosci. 2012 Jun 27;32(26):8831-44. doi: 10.1523/JNEUROSCI.5746-11.2012. Erratum in: J Neurosci. 2012 Sep 26;32(39):13639. Mao, Chai-An [added]; Klein, William H [added].

13.

Odor response properties of neighboring mitral/tufted cells in the rat olfactory bulb.

EgaƱa JI, Aylwin ML, Maldonado PE.

Neuroscience. 2005;134(3):1069-80.

PMID:
15994017
14.

Electrophysiological and behavioral phenotype of insulin receptor defective mice.

Das P, Parsons AD, Scarborough J, Hoffman J, Wilson J, Thompson RN, Overton JM, Fadool DA.

Physiol Behav. 2005 Oct 15;86(3):287-96.

15.

Secreted TARSH regulates olfactory mitral cell dendritic complexity.

Cheng TW, Gong Q.

Eur J Neurosci. 2009 Mar;29(6):1083-95. doi: 10.1111/j.1460-9568.2009.06660.x.

16.

Discrimination among odorants by single neurons of the rat olfactory bulb.

Wellis DP, Scott JW, Harrison TA.

J Neurophysiol. 1989 Jun;61(6):1161-77.

PMID:
2746317
17.
18.
19.

The Olfactory Bulb: A Metabolic Sensor of Brain Insulin and Glucose Concentrations via a Voltage-Gated Potassium Channel.

Tucker K, Cavallin MA, Jean-Baptiste P, Biju KC, Overton JM, Pedarzani P, Fadool DA.

Results Probl Cell Differ. 2010;52:147-57. doi: 10.1007/978-3-642-14426-4_12. Review.

Items per page

Supplemental Content

Support Center