Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 122

1.

Nanobiotechnology advanced antifouling surfaces for the continuous electrochemical monitoring of glucose in whole blood using a lab-on-a-chip.

Picher MM, Küpcü S, Huang CJ, Dostalek J, Pum D, Sleytr UB, Ertl P.

Lab Chip. 2013 May 7;13(9):1780-9. doi: 10.1039/c3lc41308j.

PMID:
23478879
2.

Electrochemical detection of glucose from whole blood using paper-based microfluidic devices.

Noiphung J, Songjaroen T, Dungchai W, Henry CS, Chailapakul O, Laiwattanapaisal W.

Anal Chim Acta. 2013 Jul 25;788:39-45. doi: 10.1016/j.aca.2013.06.021. Epub 2013 Jun 20.

PMID:
23845479
3.

Enhancing the sensitivity of needle-implantable electrochemical glucose sensors via surface rebuilding.

Vaddiraju S, Legassey A, Qiang L, Wang Y, Burgess DJ, Papadimitrakopoulos F.

J Diabetes Sci Technol. 2013 Mar 1;7(2):441-51.

4.

Integration of paper-based microfluidic devices with commercial electrochemical readers.

Nie Z, Deiss F, Liu X, Akbulut O, Whitesides GM.

Lab Chip. 2010 Nov 21;10(22):3163-9. doi: 10.1039/c0lc00237b. Epub 2010 Oct 7.

5.

An electrochemical Lab-on-a-CD system for parallel whole blood analysis.

Li T, Fan Y, Cheng Y, Yang J.

Lab Chip. 2013 Jul 7;13(13):2634-40. doi: 10.1039/c3lc00020f. Epub 2013 May 9.

PMID:
23660843
6.

Development of glucose sensor using two-photon adsorbed photopolymerization.

Kim JM, Park JJ, Lee HJ, Kim WS, Muramatsu H, Chang SM.

Bioprocess Biosyst Eng. 2010 Jan;33(1):47-53. doi: 10.1007/s00449-009-0368-z.

PMID:
19727835
7.

Dynamic electrochemistry corrects for hematocrit interference on blood glucose determinations with patient self-measurement devices.

Musholt PB, Schipper C, Thomé N, Ramljak S, Schmidt M, Forst T, Pfützner A.

J Diabetes Sci Technol. 2011 Sep 1;5(5):1167-75.

8.

Novel micromachined silicon sensor for continuous glucose monitoring.

Piechotta G, Albers J, Hintsche R.

Biosens Bioelectron. 2005 Nov 15;21(5):802-8.

PMID:
16242621
9.

Fabrication of tunable microreactor with enzyme modified magnetic nanoparticles for microfluidic electrochemical detection of glucose.

Sheng J, Zhang L, Lei J, Ju H.

Anal Chim Acta. 2012 Jan 4;709:41-6. doi: 10.1016/j.aca.2011.10.008. Epub 2011 Oct 14.

PMID:
22122929
10.

Status of biomolecular recognition using electrochemical techniques.

Sadik OA, Aluoch AO, Zhou A.

Biosens Bioelectron. 2009 May 15;24(9):2749-65. doi: 10.1016/j.bios.2008.10.003. Epub 2008 Oct 21. Review.

PMID:
19054662
11.

An enzymatic microreactor based on chaotic micromixing for enhanced amperometric detection in a continuous glucose monitoring application.

Moon BU, Koster S, Wientjes KJ, Kwapiszewski RM, Schoonen AJ, Westerink BH, Verpoorte E.

Anal Chem. 2010 Aug 15;82(16):6756-63. doi: 10.1021/ac1000509.

PMID:
20704364
12.

Microfluidic devices with disposable enzyme electrode for electrochemical monitoring of glucose concentrations.

Li X, Zhang F, Shi J, Wang L, Tian JH, Zhou XT, Jiang LM, Liu L, Zhao ZJ, He PG, Chen Y.

Electrophoresis. 2011 Nov;32(22):3201-6. doi: 10.1002/elps.201100355. Epub 2011 Oct 31.

PMID:
22038673
13.

Glucose microfluidic biosensors based on reversible enzyme immobilization on photopatterned stimuli-responsive polymer.

Xiong M, Gu B, Zhang JD, Xu JJ, Chen HY, Zhong H.

Biosens Bioelectron. 2013 Dec 15;50:229-34. doi: 10.1016/j.bios.2013.06.030. Epub 2013 Jun 24.

PMID:
23867353
14.

[Laboratory on a microfluidic chip].

Lin B, Qin J.

Se Pu. 2005 Sep;23(5):456-63. Review. Chinese.

PMID:
16350786
15.

Hematocrit compensation in electrochemical blood glucose monitoring systems.

Teodorczyk M, Cardosi M, Setford S.

J Diabetes Sci Technol. 2012 May 1;6(3):648-55.

16.

Integrated electrokinetic magnetic bead-based electrochemical immunoassay on microfluidic chips for reliable control of permitted levels of zearalenone in infant foods.

Hervás M, López MA, Escarpa A.

Analyst. 2011 May 21;136(10):2131-8. doi: 10.1039/c1an15081b. Epub 2011 Mar 11.

PMID:
21394379
17.

Electrochemical studies on liquid properties in extended nanospaces using mercury microelectrodes.

Tsukahara T, Kuwahata T, Hibara A, Kim HB, Mawatari K, Kitamori T.

Electrophoresis. 2009 Sep;30(18):3212-8. doi: 10.1002/elps.200900155.

PMID:
19722213
18.
19.

Use of microelectrodes for electrochemiluminescent detection in microfluidic devices.

Fredrick SJ, Gross EM.

Bioanalysis. 2009 Apr;1(1):31-6. doi: 10.4155/bio.09.1.

PMID:
21083185
20.

A universal spring-probe system for reliable probing of electrochemical lab-on-a-chip devices.

Lee MK, Lee TJ, Choi HW, Shin SJ, Park JY, Lee SJ.

Sensors (Basel). 2014 Jan 8;14(1):944-56. doi: 10.3390/s140100944.

Items per page

Supplemental Content

Write to the Help Desk