Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 161


Intestinal mast cells mediate gut injury and systemic inflammation in a rat model of deep hypothermic circulatory arrest.

Karhausen J, Qing M, Gibson A, Moeser AJ, Griefingholt H, Hale LP, Abraham SN, Mackensen GB.

Crit Care Med. 2013 Sep;41(9):e200-10. doi: 10.1097/CCM.0b013e31827cac7a.


Neurologic outcome after cardiopulmonary bypass with deep hypothermic circulatory arrest in rats: description of a new model.

Jungwirth B, Mackensen GB, Blobner M, Neff F, Reichart B, Kochs EF, Nollert G.

J Thorac Cardiovasc Surg. 2006 Apr;131(4):805-12.


Mast cells and intestinal injury: a novel link between hypoxia and inflammation.

Grenz A, Eltzschig HK.

Crit Care Med. 2013 Sep;41(9):2246-8. doi: 10.1097/CCM.0b013e318283cc70. No abstract available.


Deep hypothermic circulatory arrest and global reperfusion injury: avoidance by making a pump prime reperfusate--a new concept.

Allen BS, Veluz JS, Buckberg GD, Aeberhard E, Ignarro LJ.

J Thorac Cardiovasc Surg. 2003 Mar;125(3):625-32.


Calpain inhibition decreases endothelin-1 levels and pulmonary hypertension after cardiopulmonary bypass with deep hypothermic circulatory arrest.

Duffy JY, Schwartz SM, Lyons JM, Bell JH, Wagner CJ, Zingarelli B, Pearl JM.

Crit Care Med. 2005 Mar;33(3):623-8.


Blockade of the extracellular signal-regulated kinase pathway by U0126 attenuates neuronal damage following circulatory arrest.

Cho DG, Mulloy MR, Chang PA, Johnson MD, Aharon AS, Robison TA, Buckles TL, Byrne DW, Drinkwater DC Jr.

J Thorac Cardiovasc Surg. 2004 Apr;127(4):1033-40.


Moderate hypothermia as a rescue therapy against intestinal ischemia and reperfusion injury in the rat.

Stefanutti G, Pierro A, Parkinson EJ, Smith VV, Eaton S.

Crit Care Med. 2008 May;36(5):1564-72. doi: 10.1097/CCM.0b013e3181709e9f.


Effect of profound hypothermia during circulatory arrest on neurologic injury and apoptotic repressor protein Bcl-2 expression in an acute porcine model.

Ananiadou OG, Bibou K, Drossos GE, Charchanti A, Bai M, Haj-Yahia S, Anagnostopoulos CE, Johnson EO.

J Thorac Cardiovasc Surg. 2007 Apr;133(4):919-26. Epub 2007 Feb 22.


Effect of pregabalin on cerebral outcome after cardiopulmonary bypass with deep hypothermic circulatory arrest in rats.

Shim JK, Ma Q, Zhang Z, Podgoreanu MV, Mackensen GB.

J Thorac Cardiovasc Surg. 2014 Jul;148(1):298-303. doi: 10.1016/j.jtcvs.2014.02.076. Epub 2014 Mar 1.


Cardiac surgery with deep hypothermic circulatory arrest produces less systemic inflammatory response than low-flow cardiopulmonary bypass in newborns.

Tassani P, Barankay A, Haas F, Paek SU, Heilmaier M, Hess J, Lange R, Richter JA.

J Thorac Cardiovasc Surg. 2002 Apr;123(4):648-54.


The effect of hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral metabolism in neonates, infants, and children.

Greeley WJ, Kern FH, Ungerleider RM, Boyd JL 3rd, Quill T, Smith LR, Baldwin B, Reves JG.

J Thorac Cardiovasc Surg. 1991 May;101(5):783-94.


Overactivation of poly(adenosine phosphate-ribose) polymerase 1 and molecular events in neuronal injury after deep hypothermic circulatory arrest: study in a rabbit model.

Pan X, Sun L, Ma W, Tang Y, Long C, Tian L, Liu N, Feng Z, Zheng J.

J Thorac Cardiovasc Surg. 2007 Nov;134(5):1227-33.


Hypothermic circulatory arrest: renal protection by atrial natriuretic peptide.

Ohno M, Omoto T, Fukuzumi M, Oi M, Ishikawa N, Tedoriya T.

Asian Cardiovasc Thorac Ann. 2009 Aug;17(4):401-7. doi: 10.1177/0218492309341712.


Is selective antegrade cerebral perfusion superior to retrograde cerebral perfusion for brain protection during deep hypothermic circulatory arrest? Metabolic evidence from microdialysis.

Liang MY, Tang ZX, Chen GX, Rong J, Yao JP, Chen Z, Wu ZK.

Crit Care Med. 2014 May;42(5):e319-28. doi: 10.1097/CCM.0000000000000220.


Evaluation of cerebral metabolism and quantitative electroencephalography after hypothermic circulatory arrest and low-flow cardiopulmonary bypass at different temperatures.

Mezrow CK, Midulla PS, Sadeghi AM, Gandsas A, Wang W, Dapunt OE, Zappulla R, Griepp RB.

J Thorac Cardiovasc Surg. 1994 Apr;107(4):1006-19.


Thromboxane A2-receptor blockade improves cerebral protection for deep hypothermic circulatory arrest.

Tsui SS, Kirshbom PM, Davies MJ, Jacobs MT, Kern FH, Gaynor JW, Greeley WJ, Ungerleider RM.

Eur J Cardiothorac Surg. 1997 Aug;12(2):228-35.


Cerebral activation of mitogen-activated protein kinases after circulatory arrest and low flow cardiopulmonary bypass.

Aharon AS, Mulloy MR, Drinkwater DC Jr, Lao OB, Johnson MD, Thunder M, Yu C, Chang P.

Eur J Cardiothorac Surg. 2004 Nov;26(5):912-9.


Effects of moderate versus deep hypothermic circulatory arrest and selective cerebral perfusion on cerebrospinal fluid proteomic profiles in a piglet model of cardiopulmonary bypass.

Allibhai T, DiGeronimo R, Whitin J, Salazar J, Yu TT, Ling XB, Cohen H, Dixon P, Madan A.

J Thorac Cardiovasc Surg. 2009 Dec;138(6):1290-6. doi: 10.1016/j.jtcvs.2009.06.001. Epub 2009 Jul 29.


A cardiopulmonary bypass with deep hypothermic circulatory arrest rat model for the investigation of the systemic inflammation response and induced organ damage.

Engels M, Bilgic E, Pinto A, Vasquez E, Wollschl├Ąger L, Steinbrenner H, Kellermann K, Akhyari P, Lichtenberg A, Boeken U.

J Inflamm (Lond). 2014 Aug 12;11:26. doi: 10.1186/s12950-014-0026-3. eCollection 2014.


Modulation of nuclear factor-kappaB improves cardiac dysfunction associated with cardiopulmonary bypass and deep hypothermic circulatory arrest.

Duffy JY, McLean KM, Lyons JM, Czaikowski AJ, Wagner CJ, Pearl JM.

Crit Care Med. 2009 Feb;37(2):577-83. doi: 10.1097/CCM.0b013e318194ab65.

Items per page

Supplemental Content

Support Center